
Simulation, Design Abstraction,

and SystemC

Ed Harcourt*
St Lawrence University, USA

SystemC is a system-level design and simulation language based on Cþþ. We’ve been using

SystemC for computer organization and design projects for the past several years. Because SystemC

is embedded in Cþþ it contains the powerful abstraction mechanisms of Cþþ not found in

traditional hardware description languages, such as support for object-oriented programming and

generic programming (templates). This support for abstraction allows instructors to reinforce

standard abstraction concepts such as information hiding, interfaces, and abstract data types,

standard fare in a computer science curriculum. Furthermore, embedded software is often written

in Cþþ and SystemC provides threading facilities useful for designing and implementing

embedded software.

1. Introduction

SystemC is a Cþþ class library that provides a rich set of data types useful for

designing, specifying, and simulating hardware/software systems at a variety of levels

of abstraction, as described in Grotker, Liao, Martin, and Swan (2002). SystemC has

wide support from industry and has become an important design language for

system-level design. Information about SystemC, including the Language Reference

Manual, can be found at Open SystemC Initiative (2006).

We’ve been using SystemC for senior capstone projects and consider it ideal for

several reasons, one of which is that SystemC is easier to learn than other hardware

description languages (HDLs), such as Verilog and VHDL, because it is embedded in

Cþþ, a language familiar to most computer science students. In computer science we

stress abstraction, information hiding, and interfaces. Because SystemC is embedded

in Cþþ its abstraction facilities are more powerful than the abstraction facilities

available in existing HDLs. These abstraction facilities allow us to reinforce a basic

principle of hardware design (and software design), that a circuit has a low level

implementation and a higher level black-box behavior and that each of these levels

*Department of Mathematics, Computer Science, and Statistics, St Lawrence University, Canton,

NY 13617, USA. E-mail: edharcourt@stlawu.edu

Computer Science Education

Vol. 17, No. 2, June 2007, pp. 87 – 96

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/07/020087-10

� 2007 Taylor & Francis

DOI: 10.1080/08993400601165248



can be implemented in SystemC and support an identical interface. See Harcourt

(2005) for a discussion of how SystemC compares with other simulation

technologies.

SystemC also comes with a rich set of predefined hardware data types. SystemC is

flexible; student projects have ranged from building low level hardware components

at the gate level all the way to high level instruction set simulators. Additionally,

SystemC’s support for concurrency makes it a good choice for embedded software

projects.

1.1. Language-Based Design

SystemC is a hardware description language, although SystemC goes beyond

hardware and can also be used for developing embedded system software.

Consequently, SystemC is often called a system-level design language useful for

designing, implementing, and simulating both the hardware and the software portions

of a digital system. Language-based design refers to the use of textual languages that

contain dedicated constructs for designing and simulating hardware. Contrast this

with graphical schematic capture tools where circuits are drawn on a screen similar to

the way they would be drawn on paper.

Language-based environments are usually based on the hardware description

languages (HDLs) Verilog and VHDL, with SystemC being a relatively new entry.

Verilog, VHDL, and SystemC are IEEE standards and are used heavily in industry.

Many tools are available for designing, testing, debugging, and synthesizing an HDL-

based design. Language-based design is even used in the popular textbook by

Patterson and Hennessy (2005).

Analogous to a chip, a block of hardware is visualized as a black box with a pin

interface. HDLs allow the designer to capture this block-oriented nature of hardware,

where systems are composed of interconnected blocks communicating through wires

and wires are connected to pins on blocks. In HDLs a block is called a module, a pin

is called a port, and a wire is called a signal.

The main strengths of HDLs is their support for large designs (scalability) and

abstraction. HDLs provide many of the same programming constructs found in

standard imperative languages, such as loops, conditionals, and functions. These

constructs are generally used in limited ways depending on the level of abstraction of

the design. For example, in a gate-level design a student would not normally use any

looping or conditional constructs, whereas a higher level design might make judicious

use of the full language.

Support for abstraction in traditional HDLs lags behind the kinds of abstraction

mechanisms found in modern programming languages. For example, support for

classes, polymorphism and generic programming is rudimentary or non-existent in

Verilog and VHDL. Consequently, it is common for higher level abstract designs to

be developed in Cþþ first. SystemC brings together the hardware concepts found in

standard HDLs (modules, ports, wires, bits) along with the powerful abstraction

mechanisms found in Cþþ.

88 E. Harcourt



2. SystemC

We briefly introduce SystemC using a canonical example of a full adder. In the next

section we provide further examples of abstraction, followed by a discussion of how

SystemC is used to support teaching computer organization and design. We only

introduce enough SystemC to discuss the examples. The reader should consult the

SystemC language reference manual for a complete description of SystemC. The

language reference manual can be downloaded from www.systemc.org.

SystemC allows the user to express block structure through the use of predefined

classes that represent blocks (modules), wires (signals), and pins (ports). SystemC

also contains a large library of useful hardware data types, such as bits, bit vectors,

four valued logic types, fixed point types, and sized integers. Furthermore, since

SystemC is a Cþþ library, SystemC development tools are just the Cþþ compilers,

debuggers, and development environments that students are already familiar with.

2.1. A Simple Example

The best way for a student to learn SystemC is to experiment with simple

combinational logic. For example, the following logic equations describe the Sum

and Carry bits of a full adder. These equations have an immediate and obvious

implementation in terms of gates.1

Sum¼a � b � c
Carry¼abþacþbc

Constructing the adder in SystemC in terms of gates we first create a module named

Adder by declaring a class that derives from the SystemC class sc module (Figure 1,

line 1). Modules can have input ports, output ports, and input/output ports declared

Figure 1. An adder constructed from And, Or, and Xor gates

SystemC 89



using the classes sc_in, sc_out, and sc_inout. These port classes are parameterized

with the type of value communicated on the port. In this example ports are single bits

which we represent using the Cþþ type bool (lines 3 – 4). Line 5 declares internal

signals needed to wire together the gates. The constructor (lines 7 – 13) ties together

all of the gates using the signals, connecting the outputs of the OR gate and the XOR

gate to the output ports of the adder. Lines 16 – 18 declare the instances of the gates

needed to implement the circuit.

2.2. Simulating the Design

Every simulation technology needs a way to provide inputs to the design and observe

outputs. In language-based designs we test designs by constructing a test bench,

another module that instantiates the design under test. Our example test bench for

the adder provides inputs (stimulus) at regular intervals that are controlled by a clock.

Figure 2 shows a simple test bench for the adder and a main program that instantiates

the adder and runs the simulation for 10 time units. The test bench generates random

stimulus to the adder on every clock pulse. The clock pulse is provided by a

predefined SystemC sc_clock module.

The test bench also introduces SystemC’s event-based style of programming, where

a module listens for events on ports. Lines 9 – 10 in Figure 2 declare that the event

handler named run should execute whenever there is a rising edge on the clock signal.

3. Teaching Abstraction

Hardware examples provide the perfect material to reinforce the importance of

abstraction and interfaces, concepts stressed heavily in a computer science curriculum.

Figure 2. A module that tests the adder

90 E. Harcourt



A circuit is a black box with an interface; how that interface is implemented may or

may not be important. For example, a useful exercise is for students to implement

simple combinational circuits in terms of gates and then re-implement those circuits

at a higher level where the functionality of the circuit is described in terms of

programming language constructs. This also provides an opportunity to talk about

higher level descriptions as executable specifications of lower level designs.

Hardware engineers classify designs at various levels of abstraction. At the lowest

level, the gate level, hardware systems are designed in terms of digital logic. At the

next level, the register transfer level (RTL), hardware systems are designed in terms

of interacting memory elements and functional units (registers, ALUs, pipeline

stages, etc.). At the highest level of abstraction, the behavioral level, hardware is

specified in terms of sequential algorithms.

As an example, rather than implement an adder in terms of gates we can construct

the adder at a higher level in terms of SystemC data types and Cþþ language

constructs. Without showing the entire module the following code snippet declares a

two bit value using the SystemC data type sc_uint, calculates the sum of the inputs,

and then writes the outputs.

sc_uint524 result¼a.read()þb.read()þc.read();
sum.write(result [0]);
carry.write(result [1]);

The point to stress to students is that this implementation of an adder has the

identical interface as the gate implementation and that the two versions of the adders

are ‘‘plug compatible.’’

Another canonical example that highlights the role of abstraction is a sequential

circuit that implements a D flip-flop (a one bit memory element). An obvious gate-

level implementation uses two cross-coupled NOR gates with some additional logic

to control the clock. More illuminating and descriptive for the student is a module

that describes the external behavior of the flip-flop, which simply specifies that the

output takes on the value of the input on the rising edge of the clock, as shown in the

module DFF below.

class DFF : public sc_module {
public:
sc_in5bool4 d, clk;
sc_out5bool4 q;
SC_CTOR(DFF) {
SC_METHOD(run);
sensitive_pos �clk;
}

void run() {q.write(d.read());} // q¼d
};

SystemC 91



3.1. Programming Abstraction

Another kind of abstraction familiar to computer scientists but not available in

traditional HDLs uses the advanced features of the programming language, in this

case Cþþ, to write generic, reusable components. For example an n bit ripple carry

adder can be constructed from n full adders. One way to do this is to use an array of

adders, an array of ports, and templates. Figure 3 shows the complete ripple carry

adder. It takes a non-type template parameter that specifies the size of the adder.

Alternatively, the higher level specification of this adder would just use addition on

n bit quantities rather than instantiating individual adders.

Leveraging Cþþ abstraction features, such as function operator overloading,

templates, and class hierarchies, a user can take abstraction to the extreme. For

example, the general concept of a gate is that it has n inputs and computes some

function as an output. It is straightforward to write a generic gate module

paramaterized on the number of inputs and the function it computes, all passed in

as template parameters (Figure 4). This example also uses the built-in for_each

algorithm from the Standard Cþþ Library. The for_each algorithm applies a function

to every item in a list, accumulating and returning the final result.

3.2. System Level Models

When an engineer is initially designing a system they may not know which subsystems

will be in the form of hardware and which will be in the form of software. Early in the

design cycle designing in terms of bits, gates, or adders may be premature. At the

Figure 3. An n-bit ripple carry adder

92 E. Harcourt



system level we design in terms of transactions, as opposed to bit-level changes on

ports. To do this we use the property that ports in SystemC can carry a value of any

type T. Returning to the D flip-flop example, rather than have ports carry a single bit

they can be declared to carry values of type sc int5324, thereby creating a 32 bit

register, or more abstractly a double if the designer cannot yet commit to a floating

point representation.

Ports and signal types need not be limited to simple scalar data types. Consider the

following type that defines a network packet.

struct NetworkPacket {
char header [10];
char body [255];

};

A port declaration can then use NetworkPacket as the type of a port; sc_in

5NetworkPacket4. In this manner system level models are neutral as to whether

they will be targeted at hardware or software.

Another kind of abstraction addresses the way in which modules communicate.

In SystemC the default communication model is a discrete event where modules

communicate and synchronize through events generated by writing to ports. This

model matches closely the way in which hardware communicates. SystemC allows the

user to change the semantics of communication with their own communication

model. For example, a high level model that instantiated a hardware FIFO may be

better suited to use blocking reads and writes to the FIFO rather than a lower level

protocol defined in terms of pins and events. Abstracting the communication model

in this way is unique to SystemC and is not supported at all in traditional HDLs.

SystemC further supports system-level design by providing software threads, also not

found in traditional HDLs.

Figure 4. A generic gate module

SystemC 93



3.3. Debugging

Debugging event-driven programs is more complicated than debugging sequential

programs. Nevertheless, since SystemC programs run in standard Cþþ development

environments a Cþþ debugger can be used to step through designs, set breakpoints

in modules, and view the values on signals and ports.

The values of ports and signals vary over time. Tools for viewing these value

changes are called waveform browsers. SystemC provides a trace capability that

outputs value changes on ports and signals to a value change dump (VCD) file, a

standard IEEE file format supported by all waveform browsers.

4. Student Projects

In this section we describe how we have used or plan to use SystemC to support

student hardware/software projects.

4.1. Combinational and Sequential Circuits

An obvious place to start is with the plethora of examples that come from

combinational circuits. Useful projects include having students implement basic

components such as multiplexors, decoders, and ripple carry adders and then using

these building blocks to construct ALUs.

Sequential circuit examples include canonical control-oriented circuits, such

as vending machines and traffic light controllers. For both combinational and

sequential designs the student should consider designing both a high level

specification of the circuit and then a lower level implementation. For

sequential circuits a high level design might use a switch statement and an

enumeration to control state changes of the finite state machine, with the low

level implementation using flip-flops and combinational logic. Implementing

these two levels of a sequential machine highlights the often confusing concept

that, at a lower level, the contents of the flip-flops hold the value of the current

state.

4.2. Processor Models

The textbook by Patterson and Hennessy (2005) describes in detail three increasingly

complex versions of a MIPS microprocessor. The first version is a mostly

combinational single cycle version. The second version is a more complicated

multi-cycle version where instructions execute in differing numbers of cycles. The

third version uses an instruction pipeline. Senior projects have involved exploring

each of these designs at various levels of abstraction.

Implementing the MIPS five stage instruction pipeline in SystemC is challenging,

but a reasonable semester-long project. In order to complete the project it forces the

94 E. Harcourt



student to think and implement components at a higher level (e.g. ALUs and

registers) rather than in terms of gates, as well as using good programming practice in

writing reusable components.

Another nice feature of SystemC is that it is straightforward to package other

software tools with the design. For example, in one project a student implemented a

simple assembler, allowing the user of the processor model to enter assembly code

rather than machine code. One student even implemented a web interface for the

MIPS simulator.

4.3. Other Projects

Other projects not yet done but well suited for SystemC include generic cache

models supporting various cache configurations, such as set associative, direct

mapped, and fully associative, as well as various block replacement strategies (e.g.

random, LRU). Using address traces, students explore the efficacy of different

configurations.

SystemC’s concurrency primitives make it a good choice for students to explore

concurrency issues and implement classic concurrent programming problems, such

as semaphores, producer/consumer, and even network protocols.

SystemC lends itself well to addressing programming in the large. Real hardware

designs are large and complex, but subsystems generally have well-defined interfaces.

Having student teams break down a large design into subsystems and then design,

implement, document, and tie these subsystems together highlights the importance of

interfaces and programming in the large.

5. Conclusions

SystemC is the first design language to attract wide support that enables both

the hardware and software portions of a digital system to be designed using a

single, common standard language. SystemC is well suited to student projects

requiring mature programming skills, provides a programming environment

students are already familiar with, and support for various levels and kinds of

abstraction, generic programming, and object-oriented design. All of the

projects undertaken to date have centered around processor modeling, but

SystemC is well suited to a variety of hardware and embedded software related

projects.

Note

1. The motivation for designing SystemC was not for describing gate-level circuits.

Most would consider it an abuse to use it in this manner. However, smaller gate-

level circuits are canonical and provide simple examples that highlight the

capabilities of SystemC, as well as being easy to understand.

SystemC 95



References

Grotker, T., Liao, S., Martin, G., & Swan, S. (2002). System design with SystemC. Boston: Kluwer.

Harcourt, E. (2005). Teaching computer organization and architecture using SystemC. The Journal

of Computing Science in Colleges, 21(2), 27 – 39.

Open SystemC Initiative. (2006). SystemC. Retrieved March 30, 2007, from www.systemc.org

Patterson, D., & Hennessy, J. (2005). Computer organization and design, The hardware/software

interface. San Francisco, CA: Morgan Kaufmann.

96 E. Harcourt


