
 Generation of Software Tools from Processor Descriptions
for Hardware/Software Codesign

Mark R. Hartoog, James A. Rowson, Prakash D. Reddy, Soumya Desai,
Douglas D. Dunlop, Edwin A. Harcourt, Neeti Khullar

Alta Group of Cadence Design Systems, Inc.

Abstract

An experimental set of tools that generate instruction set simula-
tors, assemblers, and disassemblers from a single description was
developed to test if retargetable development tools would work for
commercial DSP processors and microprocessors. The processor
instruction set was described using a language called nML. The
TMS320C50 DSP processor and the ARM7 microprocessor were
modeled in nML. The resulting instruction set models execute
about 25,000 instructions per second, and compiled instruction set
simulation models execute about 150,000 instructions per second.
The viability of this approach and the deficiencies of nML are dis-
cussed.

1. Introduction
Models and development tools for target processors are an impor-
tant part of a Hardware/Software Codesign system. Commercial
processors generally have instruction set models, assemblers,
debuggers and compilers supplied by the vendor. We have inte-
grated some of these vendor models into a Hardware/Software
Codesign system. Each of these vendor supplied sets of develop-
ment tools is different, and whenever a user switches to a new pro-
cessor he must learn to use a different set of development tools
with different capabilities. It would be much better if a consistent
set of retargetable development tools were available for a variety
of processors.

Currently vendors devote significant effort to producing a set of
good development tools for their processors. There has been much
discussion about custom or application specific processors, but the
effort to create the development tools for these custom processors
has so far held back the wide spread acceptance of this approach.
If it were possible to significantly reduce the effort required to pro-
duce a suite of development tools through a retargetable approach,
this would appeal to many vendors of standard and custom proces-
sors.

While we are interested in models and development tools for
embedded microprocessors and DSP processors, considerably less
work is being done on DSP processors and they have many fea-
tures that are not found in microprocessors. For this reason we
decided to focus our study on retargetable development tools for

DSP processors, but evaluate them for microprocessors as well.

Several approaches have been taken to the problem of retargetable
DSP processor models. The FlexWare tools set [1] included a
retargetable instruction set model called Insulin [1, 2]. Insulin was
built around a partially reconfigurable VHDL simulation model of
a generic processor. It could be reconfigured for bit width, number
of registers, number of ALUs, etc. Insulin cross assembled target
processor instructions into micro instructions for the generic pro-
cessor, which were then executed on the generic VHDL model.
The processor description was a list of generic processor micro
instructions to execute each target processor instruction.

A different approach was used by the Technical University of Ber-
lin and IMEC. The Technical University of Berlin (TUB) devel-
oped a language called nML [3, 4] for describing processor
instruction sets. TUB developed an instruction set simulator called
SIGH/SIM [5], which worked from the nML description and a
code generator called CBC [6]. IMEC independently developed a
code generator called CHESS [7] which used nML and an instruc-
tion set simulator called CHECKERS.

During our initial investigations into DSP code generation, it
became clear that an instruction set level description was necessary
for a number of tasks. We decided to develop a number of tools
using nML as an experimental method to describe processors. The
main objective was to determine whether a good suite of develop-
ment tools could be generated for commercial DSP processors and
microprocessors using this kind of a retargetable approach.

2. nML
The nML language [4] relates three different views of an instruc-
tion set: the behavior, the assembly syntax, and the object code
image. It also allows the instruction set to be broken down into
classes of instructions with shared code, syntax, and image.
Addressing modes are also supported explicitly.

nML is a form of attributed grammar. An attributed grammar is a
declarative description of a language with attributes added onto the
“rules” of the grammar. Each view of the processor (action, syntax,
and image) is an attribute attached to the rule for that instruction or
addressing mode.

In addition to the rules that describe the instruction set, nML by
necessity has some other ways to declare types, memories, etc.

The nML language has 3 important language features:

■ Declarations

■ Addressing Modes expressed as rules

■ Instructions expressed as rules

Declarations are used to define the internal states of the processor.
nML assumes that all internal states are memories of some bit-
width. A single register will be a memory of size 1.

Both instructions and addressing modes can have two forms: an
AND form that requires all the arguments, and an OR form that
selects from alternatives.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

Addressing modes are used to compute effective addresses. The
behavior for an addressing mode is an expression. Addressing
modes can appear on the left or right hand side of the behavior in
an instruction, so the expressions that are legal are those that can
be on the left hand side of an assignment.

Instructions have an RTL-like behavior. Because the formal argu-
ment to an instruction can be an OR addressing mode, a single
instruction rule can represents quite a rich collection of actual
instructions.

Both instructions and addressing modes have “syntax” and
“image” attributes. The syntax attribute defines the assembler syn-
tax for the instruction or addressing mode. The image attribute
defines the object code encoded as a string of 1’s and 0’s.

This is a simple example of nML addressing mode rules:

mode MEMORY(i:index)=M[R[i]]
syntax=format(“(R%d)”,i)
image=format(“0 %4b”,i)

mode REGISTER(i:index)=R[i]
syntax=format(“R%d”,i)
image=format(“1 %4b”,i)

mode ADDR = MEMORY | REGISTER

In this examplemode is a keyword that identifies these as address-
ing modes.MEMORY, REGISTER, andADDR are the names of
addressing modes in this example. The modeADDR is an OR rule
which is either theMEMORY or REGISTER mode. The first two
addressing modes are AND rules, which have expressions after the
equal sign describing the behavior of the addressing mode. In this
exampleM is a memory,R is a register array andindex is a data
type defined to be a four bit unsigned integer. TheMEMORY mode
expression addresses the memory location whose address is in the
i th register. The syntax and image attributes are defined using a
nML format statements. Aformat statement is similar to the C
printf function, with the extension that%b is a binary format.
These format statements indicate how to extract the parameteri
from the assembler syntax and from the object code for the
addressing mode.

A simple example of nML instruction rules is:

op add_op(src:ADDR,dst:ADDR)
action={ dst = src + dst; }
syntax = format(“add %s,%s”,src.syntax,

dst.syntax)
image = format(“000001 %b %b”,dst.image,

src.image)

In this exampleop is a keyword which identifies this rule as an
instruction rule andadd_op is the name of the rule. The parame-
ter,src anddst , are both of typeADDR, which is the OR
addressing mode shown above. This means that these values may
be addressed by either of the addressing modes in theADDR rule.
The action attribute describes the RTL behavior of this instruction.
When you evaluate this behavior,src anddst get replaced by the
expressions for the addressing modes decoded from the image or
assembly code. For example, if src isMEMORY mode, then you can
replace src in the action byM[R[i]] , wherei is the four bit reg-
ister index decoded from the image or syntax. The syntax and
image attributes are nML format statements, similar to the address-
ing rules above, but with the extension that they include the syntax
or image attribute of thesrc anddst parameters.

3. Tools
Given this kind of declarative description of an instruction set, it is
possible to generate automatically several different useful tools:

■ Instruction Set Simulator (ISS) - use the image to decode the
instruction and then execute the behavior

■ Compiled Instruction Set Simulator (CISS) - same as above,
but decoding is done at model generation time to produce a
simulation mode for a processor running a specific program
[8].

■ Disassembler - use the image to decode the instruction and
then produce the assembler syntax for that instruction

■ Assembler - parse the assembler syntax for the instruction and
generate the image

■ Code Generator - given a piece of behavior, use the behaviors
as patterns to “cover” the behavior, generating a sequence of
object code images that will execute with the correct
semantics

■ Code Retargeter - read the image for one processor and
generate an in-memory behavior, then use the behaviors from
a different processor to pattern match and generate a different
set of object code images

We have built the first 4 programs using nML as the input. Given
an nML description we produce a C++ instruction set simulator
and disassembler, which can then be compiled and run within a
processor independent debugger written using C++ and Tcl/Tk
(see Figure 1). An assembler was written that used the same nML
description to assemble code fragments in an interpreted way
(although we could have generated a YACC grammar and made a
more efficient assembler). The assembler is still relatively incom-
plete, handling the assembly of individual instructions but with no
directives, variable declarations, labels, etc.

The compiled instruction set simulator [8] decodes a program and
generates a model for that program running on a processor. This
has obvious restrictions, such as no self modifying code, but
because the decode is done once at model generation time, it pro-
duces models that are much faster than conventional ISS models
which decode each instruction every time it is executed

Figure 1 Debugger with register display window

4. Instruction Set Models
We developed two different ISS generators. The first one, called
ML, only produced ISS models. The second one, called Markus,
was more general, and supported both ISS and CISS model gener-
ation.

The ML model generator has a front end which parses the nML
description and builds a data structure to represent it. The ISS
model is then produced from the data structure. In the ISS model
there is a load and a store function for each addressing mode which
is passed the image bit string as an argument. The constant zero
and one bits in the image attributes are used to decode the address-
ing mode. When an addressing mode is decoded, then parameters,
like the indexi in the example addressing modes above, are
extracted from the image bits to get or set the value in the location
addressed by the mode. An OR addressing mode load or store
function tries each of its rules to see if the image bit string can be
decoded by any of its addressing mode rules.

The ML models also has action functions for each instruction rule.
These action functions are passed the image bit strings for the
instruction. Again, the constant zero and one bits in the image
attribute are used to decode whether this is the correct instruction.
The image attribute is also used to extract the image bit strings of
addressing mode parameters, likesrc anddst in the above
example, from the image bit string of the instruction. Then the
body of the action attribute is executed, with the addressing mode
parameters replaced by calls to the load or store functions for the
addressing mode. Each of these calls to a load or store function is
passed the image bit string corresponding to its parameter.

The Markus model generator was designed to produce both ISS
and CISS models. To do this the instruction decode generation and
the action execution generation were decoupled so that the ISS and
CISS model generation could share the same basic code. Markus
has a front end which parses the nML description into an Interme-
diate Representation (IR). There is a decode generator which ana-
lyzes the IR and generates a C++ program that decodes an
instruction by parsing the image attributes in the nML rules. The
generated C++ returns a data structure that represents the decoded
instruction. The action compiler uses the nML action attributes
from the IR to generate C++ code to carry out the operations spec-
ified in the action. In the ISS model the data structure returned by
the decode routine is passed to the action routine to carry out the
instruction. In the CISS the decode of the target program is done at
model generation time and the data structure returned by the
decode routine is used to generate calls to the action routines with
the constant arguments decoded from the program. The CISS
model then is just a series of calls to the appropriate action routines
to execute the target program.

The debugger, shown in Figure 1, worked with models from the
ML ISS generator and could have been easily adapted to work with
the Markus ISS models. Something similar to this can be generated
for a CISS model [8], but our CISS model generator output C/C++
preprocessor directives which pointed to the source code of the tar-
get processor program and the nML description. This allow you to
use a standard C debugger to step through the target program and
the nML description of the instructions at the same time.

5. Assembler and Disassembler
The ML ISS generator included a disassembler generator. The dis-
assembler is very similar to the ML instruction set model. When a
rule and its parameters are decoded, instead of executing the action
or expression, the syntax attribute is evaluated to produce a string
containing the assembler instruction. This disassembler was used
as part of the debugger show in Figure 1. It did not produce sym-

bolic names for memory locations, although it could easily have
been extended to do this.

The assembler currently works by matching against lists of pat-
terns built up from the nML syntax attributes. When a match is
found, the corresponding image attributes are evaluated to produce
the object code. This assembler is intended to be used as part of the
debugger and currently does not support labels or symbolic loca-
tion names.

6. Instruction Set Model Performance
We used the TI TMS320C50 to try out our tools on a real commer-
cial DSP processor. The C50 description is 1988 lines so far
(although some instructions are incompletely implemented
because of nML limitations). The ISS model and disassembler
from the ML generator is 9004 lines of code. This ISS runs a very
simple repetitive program (generating Fibonacci numbers) at
approximately 26,500 instructions per second on a SPARC 20.

We used the ARM7 microprocessor to try our tools on a commer-
cial microprocessor. The ARM7 description is about 1000 lines of
nML. We used Markus model generator and tested both ISS and
CISS models for the ARM7. The ISS model ran a simple program
at about 22,000 instructions per second on a Ultra SPARC. The
CISS model ran this same program at about 150,000 instructions
per second on a Ultra SPARC.

The performance of these ISS models generated from nML is sim-
ilar to the performance of vendor supplied ISS models for com-
mercial DSP processors and microprocessors. The ML generator
appears to produce faster ISS models than the Markus generator,
perhaps because the Markus ISS models allocates data structures
to describe the decoded instructions. Neither of these model gener-
ators was really tuned for performance though, and it is clear that
better performance could be obtained from each approach.

The CISS models, as expected, are almost an order of magnitude
faster than the ISS models. There are a number of obvious things
that could be done to improve the performance of the Markus CISS
models, such as inlining the actions rather than making function
calls to them. With some additional work we expect the Markus
CISS models could be made considerably faster.

7. Conclusions
With some enhancements to nML or a similar language, it looks
feasible to develop retargetable instruction set simulators for com-
mercial DSP processors and microprocessors.The areas that we
think nML needs to be improved are:

■ Delayed assignments.

■ Interrupts

■ Flexible PC updates

■ Improved arithmetic support.

■ Local variables.

It is currently difficult to encode behavior like delayed register
assignments or delayed branches (a delayed assignment to the PC)
in nML. You have to create temporary registers to save the delayed
assignments, and your top level instruction has to make the assign-
ments the correct number of clock cycles later. Modeling delayed
assignment this way makes it more difficult to use the same behav-
ior for code generation. Adding an explicit delayed assignment to
nML moves this complexity out of the behavior.

Likewise, interrupts are not part of the current nML language. A
test for interrupts can be added to the top level instruction, but
again this makes interrupt handling part of every instruction’s

behavior, which makes it more difficult to use this behavior for
code generation.

The nML specification is vague about how the PC gets updated. To
properly handle multi-word instructions, the PC update needs to be
in each instruction, but for repeat instruction (zero overhead loops)
you want to execute an instruction some number of times without
updating the PC. It is possible to work around this in the behavior,
but this again makes the behavior less usable for code generation.

In nML registers or memories are declared as being signed or
unsigned, but whether the data in a register is treated as signed or
unsigned usually depends on the instruction, not the register. Pro-
cessors also have carry or overflow bits that must be set. The cur-
rent nML arithmetic instruction could be improved to make it
easier to set these flags, and make it clearer that these are status
flags.

Finally, nML does not allow local variables or storage locations in
behaviors. All temporary locations must be declared as global reg-
isters or memories. The nML behavior descriptions would be eas-
ier to understand and maintain if you could declare local variables.

Some people doing Hardware/Software Codesign think they need
cycle accurate or pin accurate processor models, although only a
few commercial DSP processors currently have such models.
Straightforward extensions of nML would support only the sim-
plest pipelines. While many DSP processors have simpler pipe-
lines than microprocessors, nML still falls far short of supporting
cycle accurate models, and nML was never intended to address pin
accurate models.

While the assembler and disassembler we developed was very sim-
ple minded, it is clear that nML could be the bulk of the specifica-
tion for a real retargetable assembler/disassembler. Some
additional information is clearly required to handle labels and
symbols and to specify what the object output should look like.

Both TUB and IMEC have used nML for retargetable code genera-
tion by using the behavior as a pattern to match against a program
behavior. We looked at doing this, but for commercial DSP proces-
sors the instruction behavior contains many details that need to be
filtered out to get an essential behavior that can be matched against
a program. A general algorithm for filtering nML behavior
descriptions does not seem possible to us, although one that would
do most of the work looks feasible. A more general solution might
be to add an essential behavior as another attribute in the nML
grammar. It is also clear that good retargetable code generators for
current commercial DSP processors is a much more complex prob-
lem then retargetable instruction set simulators, and may only be
solved by enhancements in the architecture of commercial DSP
processors.

Code generation for commercial microprocessors like the ARM7
is much simpler than for DSP processors. A code generator for
these kinds of processor from nML seems more feasible, although
a custom code generator might still be more efficient.

Acknowledgments

We would like to thank Markus Freericks of the Technical Univer-
sity of Berlin for permission to use the nML language.

References

1. P. Paulin, C. Liem, T. May, S. Sutarwala, "FlexWare: A
Flexible Firmware Development Environment for Embedded
Systems", in P. Marwedel, G. Goossens, Code Generation for
Embedded Processors, Kluwer, 1995, pp. 67-84.

2. S. Sutarwala, P. Paulin, Y Kumar, "Insulin: An Instruction Set
Simulation Environment",Proc. of CHDL, Ottawa, Canada,
April 1993, pp. 355-362

3. A. Fauth, J. Van Praet, M. Freericks, "Describing Instruction
Set Processors Using nML",Proc. European Design and Test
Conf., Paris (France), March 1995, pp. 503-507.

4. M. Freericks, "The nML Machine Description Formalism",
Tech. Rep. 1991/15, TU Berlin, Fachbereich Informatik,
Berlin, 1991.

5. F. Lohr, A. Fauth, M. Freericks, "SIGH/SIM - an Environment
for Retargetable Instruction Set Simulation", Tech. Rep. 1993/
43, TU Berlin, Fachbereich Informatik, Berlin, 1993.

6. A. Fauth, A. Knoll, "Automated Generation of DSP Program
Development Tools", inProc. IEEE ICASSP-93, May 1993.

7. D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F.
Thoen, G. Goossens, "CHESS: Retargetable Code Generation
for Embedded DSP Processors", in P. Marwedel, G. Goossens,
Code Generation for Embedded Processors, Kluwer, 1995,
pp. 85-102.

8. V. Zivojnovic, H. Meyr, "Compiled HW/SW Co-Simulation",
in Proc. ACM/IEEE Design Automation Conference, pp. 690-
695, 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

