
•

/

ECL: A SPECIFICATION ENVIRONMENT
FOR SYSTEM-LEVEL DESIGN

Gerard Berry
Ed Harcourt
Luciano Lavagno
Ellen Sentovich

Abstract We propose a new specification environment for system-level design
called ECL. It combines the Esterel and C languages to provide a more
versatile means for specifying heterogeneous designs. It can be viewed
as the addition to C of explicit constructs from Esterel for concurrency
and pre-emption, and thus makes these operations easier to specify and
more apparent. An ECL specification is compiled into a reactive part (an
extended finite state machine representing most of the ECL program),
and a pure data looping part. The first can be robustly estimated and
synthesized to hardware or software, while the second is implemented
in software as specified. ECL is a good candidate for specification of
new behavior in system-level design tools such as Cadence's Cierto VCC
tool[l]. ECL is especially targeted for specification of control protocols
between data-computing behavioral blocks.

1. OBJECTIVES

System-level designs are typically conceived as a set of communicat-
ing processes. The processes may communicate synchronously or asyn-
chronously, may be control- or data-dominated, may have hard real-time
constraints, and may be used in embedded systems. Such a wide variety
of characteristics and requirements implies that there is no single lan-
guage that can be efficient for specification. Nonetheless, it is desirable
to be able to specify such designs in an integrated environment, so that
the design as a whole can be both treated with a common semantics,
at least at the communication level, and automatically synthesized, at
least to the extent possible.

205

J. Mermet (ed.), Electronic Chips & Systems Design Languages, 205-212.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



•

206

For this reason, we propose the use of a new executable specifica-
tion environment called ECL. The main idea is to combine two existing
languages to create a specification medium that can benefit from the
features of both languages and their existing well-developed compilers.
In particular, we add the convenient and concise constructs from Esterel
for concurrency and pre-emption to C.

A prototype ECL compiler has been completed and is currently being
tested and further developed on some industrial examples.

2.

2.1

BACKGROUND

ESTEREL
Esterel [5, 4] is a language and compiler with synchronous semantics.

This means that an Esterel program has a global clock, and each module
in the program reacts at each "tick" of the global clock. All modules
react simultaneously and instantaneously, computing and emitting their
outputs in "zero time", and then are quiescent until the next clock tick.
This is classical finite state machine (FSM) behavior, but with a de-
scription that is distributed and implicit, making it very efficient. This
underlying FSM behavior implies that the well-developed set of algo-
rithms pertaining to FSMs can be applied to Esterel programs. Thus,
one can perform property verification, implementation verification, and
a battery of logic optimization algorithms.

The Esterel language provides special constructs that make the spec-
ification of complex control structures very natural. It is often referred
to as a reactive language, since it is intended for control-dominated sys-
tems where continuous reaction to the environment is required. Com-
munication is done by broadcasting signals, and a number of constructs
are provided for manipulating these signals and supporting concurrency
and signal pre-emption (e.g., parallel, abortion and suspension).

The Esterel compiler resolves the internal communication between
modules, and creates a C program implementing the underlying FSM
behavior. A sophisticated graphical source-level debugger is provided
with the Esterel environment. While Esterel only provides a few simple
data types, one can create and use any legal C data types; however, this
is separate from the Esterel program, and must be defined separately
by the designer. Pure C procedures and functions can be defined by the
user and called from an Esterel program, but again there are definitions
and code that must be written by hand by the designer.



207

2.2

The C language is ubiquitous. It is used as an application lan-
guage (system-level programming), used for controlling hardware (e.g.,
drivers), and also used commonly as a hardware modeling language (e.g.,
instruction set simulators). However, it lacks control constructs that
manage communication and concurrency between modules: one would
have to implement these through hand-crafted data types and parame-
ter passing. Nonetheless, C is a widely used language: the user-base is
huge, there is much legacy code, and there are many robust compilers.

3. ECL: ESTEREL + C LANGUAGES

3.1 OVERVIEW
ECL is primarily for authoring new modules in a system-level de-

sign tool. It is expected to be particularly useful for specification of of
control-oriented, software-dominated glue communication functions such
as protocol stacks. It supports a mix of control (reactive) and data state-
ments, and automatically synthesizes the code needed for the interaction
of these two. It compiles a maximum subset of the ECL specification into
reactive modules in Esterel and subsequently into asynchronously com-
municating extended Finite State Machines called Codesign Finite State
Machines (CFSMs [3]). CFSMs have a semantics that admits robust op-
timization and synthesis to either hardware or software, and their cost
and performance can be estimated for a variety of possible subsequent
implementations [3]. The rest of the program is compiled to data mod-
ules implemented in C and called by the Esterel modules.

3.2 SYNTAX

In terms of coding constructs and style, ECL simply combines Esterel
and C. In particular, the concurrent and pre-emptive constructs of Es-
terel are added to C, along with communication by signals for controlling
the flow.

The basic syntax of an ECL program is C-like, with the addition
of the module. A module is like a subroutine, but may take special
parameters called signals. The signals behave as signals in Esterel,
and an equivalent subset of Esterel constructs are provided in ECL to
manipulate them. As a simple example, the following code fragment:

ttdefine data_size 80
typedef struct { int a, b } my_type;
module read_signal_data(input my_type IN_DATA, output int DONE)



.'

208

int i, sum;
while (1) {

for (sum = i = 0; i <= data_size;
await (INJ) ATA);
sum += IN_DATA.a * INJDATA.b;

emit (DONE , sum) ;

waits for data-size occurrences of the input signal, sums the two fields
of each occurrence, and emits the DONE signal when all have been re-
ceived. Note that in C, there is no natural construct for the commu-
nication through signals as done here; in Esterel, there is no automatic
handling of the user-defined data type, and there is no explicit for loop.
Though this can be easily specified with Esterel loops, for most design-
ers it is more natural to use C looping constructs. In addition, Esterel
loops must be reactive, that is, contain a halting statement. This could
lead to an inefficient software implementation of loops that purely walk
through, say, an array without waiting for external inputs, because it
would require an FSM transition for each iteration that is more suited
for hardware, rather than a straightforward loop-based software imple-
mentation.

3.3 SEMANTICS

The semantics of an ECL program are synchronous for each stand-
alone, top-level single reactive module, just as with Esterel or any ex-
tended finite state machine language. At a higher-level, the modules are
interconnected and will communicate via the semantics imposed at this
higher level. In our current CFSM-based back-end implementation, a
globally asynchronous semantics is applied at this network level.

The communication between parts of an ECL program, whether it
be synchronous (within a top-level module) or asynchronous (between
modules), is always done through signals (which may be valued). The
decision about how to partition the design into synchronous individual
modules communicating asynchronously is an implementation issue. We
currently leave it to th'e designer to make such a choice, based on sim-
ulation and exploration at the specification level to aid in choosing the
best implementation.



X

•

209

3.4 SUPPORT FOR PURE C AND ESTEREL
An ECL program typically is a mix of C and Esterel-like statements,

but pure ANSI C and pure Esterel (with C-like syntax) are supported
as subsets of ECL. This implies that legacy C code can be used in ECL-
based system design.

The current compilation scheme for ECL translates as much of an ECL
program as possible into Esterel, for full synthesis and optimization. In
this way, we also maximize the subset of ECL that can be implemented
as hardware, by being translated completely to Esterel first and CFSMs
later. It is a subject for future work to explore schemes (more oriented
towards legacy code handling and software implementation) in which
only a minimal part of ECL, including only some reactive constructs
(such as abort) is translated in Esterel, and the rest is left as C.

3.5 ECL COMPILATION
The prototype ECL compiler being implemented has two primary

parts:

1. Parser/Reactive Recognizer: parses the ECL input into an
internal data structure; traverses this data structure to recognize
the reactive parts (Esterel-based statements), separate them, and
write the result out in the form of C and Esterel code. This ba-
sically generates a description that can be used by the Esterel
compiler to generate a top-level reactive FSM calling some (resid-
ual) C code. As previously stated, a maximum subset of the ECL
program is compiled into Esterel, since it is this portion that can
be estimated, aggressively optimized, and synthesized to hardware
or software.

2. Esterel compilation: This part has two possibilities. The first
is using the Esterel compiler to generate C code. Here, the code
generated can be generic C code, or can be targeted for Simula-

-»

tion using one of the Esterel simulators, or can be targeted for
import to a commercial system design simulation tool. This flow
has been tested with different simulators on different platforms
and for a variety of test examples. The second possibility is using
the Esterel compiler to generate CFSMs. This is a new part of the
Esterel compiler being developed by the Esterel team in France
and Cadence to compile Esterel programs to CFSMs and then to
estimatable software and hardware. At a higher-level, the modules
are connected via a globally asynchronous network communication
scheme. As a side benefit, this compilation path uses the common



210

DC format, which implies that with it, there will be a connection
to other synchronous languages besides Esterel. This second path
is currently under development and test.

3.6 ON CONTROL AND DATA
One of the primary tasks of the ECL compiler is to recognize and sep-

arate the control and data parts. An ECL program will contain a mix of
statements, manipulating signals and ordinary variables, communicating
through signals, looping through computations, pre-empting operations,
and calling external (C) functions. There are two types of loops: reac-
tive loops which contain at least one Esterel await-type statement (e.g.
await (S);), and data loops containing no such statements, and hence
appearing to be instantaneous from a signal communication standpoint.
A data loop is just like an ordinary loop in C, and is forbidden in Esterel
since, with the notion of time, such a loop would be instantaneous (ex-
ecuting the same statements twice in the same clock tick). Data loops
are allowed in ECL, but are compiled into separate C (inlined) functions
called by the Esterel code.

The only ECL constructs that cannot be compiled into CFSMs are
thus the external (user-defined) functions, and the data loops. In the
treatment of complex data types, the ECL compiler generates the appro-
priate type definitions in Esterel and C, as well as the field and element
access (inlined) functions called by Esterel and implemented in C.

The example above would be compiled into the following Esterel code:

type my_type;
function get_a (my_type): integer;
function get_b (my_type): integer;
procedure AUTOINCR (integer)();
module read_signal_data:
input IN_DATA:my_type;
output DONE:integer;
var sum, i: integer in

loop
sum := 0;
i := 0;
trap done in

loop
if i > 80 then exit done;
await IN_DATA;
sum := sum + get_a(IN__DATA) * get_b(IN_DATA) ;
AUTOINCR(i)();



•
,t

•

211

end loop
end trap;
emit DONE (sum);

end loop
end var
end module

A simple C header file would contain a set of macros implementing
AUTOINCR, get_a and so on. In this case, there is no data loop, and
hence the pure C code part is empty.

3.7 OPTIMIZATION AND SYNTHESIS TO
HARDWARE AND SOFTWARE

A top-level single CFSM is synchronous and equivalent to an extended
finite state machine. This implies that all the robust techniques for opti-
mization (combinational and sequential logic optimization, optimization
based on reachable states, etc), verification (both property verification
and specification/design verification), and synthesis of FSMs can be ap-
plied. Furthermore, CFSMs can be synthesized indifferently to hardware
or software. Thus, for the reactive parts of the ECL program, powerful
techniques for implementation generation are available.

4. CONCLUSIONS AND FURTHER
DIRECTIONS

Since this paper was originally published, at FDL in 1998, consider-
able progress has been made. At that time, an ECL compiler prototype,
proprietary to Cadence, was under test within their system-level design
tools.

At the 1999 Design Automation Conference, a more extensive paper
on ECL was published [6]. As of this latest writing, a new version of the
compiler has been written in Java and is freely available on the web [2].
In addition, it has a smooth flow for integrating ECL models into the
Cierto VCC system-level design tool by Cadence [1],

To summarize the capabilities, the ECL compiler compiles ECL pro-
grams into a maximally synthesizable subset; one important current
direction for research is to synthesize only a minimal subset of the ECL
program (the minimal reactive part), while leaving the rest in its C-code
specification form. This style of compilation will be useful for importing
legacy code, where the user would like to preserve the existing code as
much as possible, while adding just enough "reactivity" to break this
code into smaller pieces that interact through signals.



••

--212

References

[1] For more information on Cadence's Cierto VCC product, visit
/http://www.cadence.com/technology/hwsw/ciertovcc.

[2] The Java version of the ECL compiler has recently become available.
Visit http://www.cadence.com/programs/na/research.shtml and fol-
low the ECL project link.

[3] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The POLIS Approach. Kluwer Academic Publishers, 1997.

[4] G. Berry. The Foundations of Esterel 1998. To appear.

[5] G. Berry and G. Gonthier. The Esterel Synchronous Programming
Language: Design Semantics, Implementation. Science of Computer
Programming, 19(2):87-152, 1992.

[6] E. Sentovich and L. Luciano. ECL: A Specification Environment for
System-Level Design. In 36nd DAG, pages 511-516, June 1999.


