Formal Specification and Simulation of

Instruction-Level Parallelism

Ed Harcourt
Dept of Computer Science
Chalmers University of
Technology
Goteborg, Sweden

Abstract

In this paper we show how to formally specify and
sitmulate the high-level instruction timing properties
of RISC/Superscalar instruction set processors. We
tllustrate the technique using a hypothetical proces-
sor that includes many features of commercial proces-
sors including delayed loads and branches, interlocked
floating-point instructions, and multiple instruction
issue. As our formalism we use SCCS, a synchronous
process algebra designed for specifying timed, concur-
rent systems.

1 Introduction

In modern instruction set processors, the temporal
and concurrent properties of the instructions are of-
ten visible to the user of the processor. Consequently,
such properties should be included in any behavioral
processor specification. We present a technique for for-
mally describing, at a high-level, the timing properties
of pipelined, superscalar processors. We illustrate the
technique by specifying and simulating a hypothetical
processor that includes many features of commercial
processors, including delayed loads and branches, in-
terlocked floating-point instructions, and multiple in-
struction issue.

As our mathematical formalism, we use SCCS, a
synchronous process algebra designed for specifying
timed, concurrent systems [Mil83]. There are many
reasons for choosing SCCS. First, SCCS allows us to
ezplicitly specify the temporal and concurrent proper-
ties of a processor. Second, SCCS is formally defined
and provides a variety of techniques for proving and
verifying properties about SCCS descriptions. Third,
there is an available tool, the Concurrency Work-

Jon Mauney
Dept of Computer Science
North Carolina State
University

Raleigh, NC 27695

Todd Cook
Dept of Electrical and
Computer Engineering

Rutgers University
Piscataway, N.J 08855

bench [CPS93], which allows us to interactively exper-
iment with, analyze, and simulate our SCCS proces-
sor descriptions. Finally, SCCS allows us to describe
a processor at a variety of levels of abstraction, from
a high-level specification to lower organizational and
implementation levels.

Our goal then is to develop a mathematical model
of instruction timing that hides irrelevant detail of im-
plementation. This research is performed in conjunc-
tion with research on designing specification languages
for instruction set architectures [CFHM93, HMC94,
HMC93, CH94].

2 SCCS

SCCS [Mil83], or Synchronous Calculus of Communi-
cating Systems, is a mathematical theory of commu-
nicating systems in which we can represent a real sys-
tem by the terms or ezpressions of that system. SCCS
allows us to directly represent the temporal and con-
current properties of the system being specified. The
syntax of SCCS processes is given by the following
BNF:

P:= 0| Done |a:P|Pi+ Py | Py x Py| P[f]
| P1S| P> Py| if b then P; else P,

Intuitively, the constant process 0 is the deadlocked
process, Done is the idle process, « : P means do ac-
tion a and proceed with P, A4+ B means proceed with
either A or B, and A x B means execute A and B in
parallel. The process P[f] means execute process P
but relabel the actions according to the function f,
and P 1T S means that, when P executes, the only vis-
ible actions are those in S. Actions are drawn from
a set Act generated by a commutative action prod-
uct operator. Each action a € Act is either atomic

or of the form ajas which means action a7 and as
execute in parallel. The operator > 1s priority choice
and is like + except that preference is given to the
left operand. The semantics of SCCS is given for-
mally in [Mil83]. Two processes communicate when
one wants to execute the action a and the other wants
to execute @. There is a predefined action 1 which is
the 1dle action and is an identity s.t. la = a.

3 Specifying a Processor

A processor is a system of interacting processes where
registers and memory interact with one or more func-
tional units. Before we proceed in specifying instruc-
tions and their interaction, it is necessary to develop
an appropriate model of registers and memory.

In SCCS, storage cells are modeled as processes.
Consider the instruction Add Ri, R, R; which reads
Ry twice and also writes R;. On most processors,
this instruction effectively executes in a single cycle
because registers are read and written in different
pipeline stages. However, we do not need to model
pipeline stages and the organization that goes with
them; instead, our process that models a register
should handle parallel reads and writes. The action
getr(a)getr(b) means read the register twice putting
the value into @ and b. The action getr(a)putr(b)
means read and write the register in parallel. The ac-
tion getr(a)getr(b)putr(d) means read the register
twice with the value going into a@ and b and write d to
the register, all in parallel. Only one putr is allowed
for each action.

Equation 1 defines a process, Reg, that can handle
parallel reads and writes.

Register Locking — It is possible that a regis-
ter is going to be updated some time in the future
(e.g., delayed loads), and any attempt to read or write
the register by another process should result in an er-
ror. We augment Equation 1 to allow a process to
reserve a register for a future update by using the ac-
tion lockreg; then at some point in the future, the
register can be written (with putr) and released with
the action releasereg.

Equation 2 modifies Regi so that when a pro-
cess locks a register, the register goes into the
state Locked_Reg where the only allowable action is
putr(z)releasereg. All other combinations of getr
and putr in the locked state lead to the inactive pro-
cess 0, specified in Illegal_Access, which, for brevity, is
ommitted.

Given the definition of one register, a family of reg-
isters (Reg1, Rega, etc.) is now defined by subscripting
each of the actions by a register number. For example,
the action putr;(z) represents writing z to register i.

The definition of a process Memory is exactly anal-
ogous to that of Registers, except that memory cells
do not have locks associated with them. For brevity,
we omit the definition of Memory and just note that
the actions getm; and putm; read and write memory
cell 7.

3.1 A 32-bit RISC

To illustrate a processor specification, we present the
instructions of a hypothetical 32-bit RISC. The in-
structions we specify are a single-cycle integer add,
a delayed-load, a delayed-branch, and a multi-cycle
floating-point add instruction.

Given our previous definitions of Registers and
Memory and using a program counter, PC, we now de-
scribe a process Instr(PC) (Equation 4) that specifies
the behavior of the instructions. Instr(PC') partitions
instructions into two classes, Branch and Non_Branch.
Non_Branch instructions are further partitioned into
arithmetic (Alu), load and store (Load_Store), and
floating-point (Float) instructions.

There are three possible alternatives of Instr(PC):

e A non-branch instruction may execute, in which
case the next instruction to execute is at PC + 4;
the first line of Equation 4 describes this situa-
tion.

e A branch instruction may execute, in which case
the next instruction to execute cannot be deter-
mined until it is known whether the branch will
be taken or not.

e If no instruction can execute, then the processor
must stall (Equation 6). The > operator is used
here because the processor should stall only when
no other alternative is available.

3.1.1 Integer Instructions

From a user’s view, the instruction Add R;, R;, Rg
appears to take one cycle to execute, that is, behav-
iorally, there is no problem with writing R1 and read-
ing R1 in consecutive instructions. The user does not
and should not need to understand bypass hardware
in order to know that the above instruction sequence
is legal. The process in Equation 7 describes the inte-
ger Add instruction, where: at time ¢, source registers
j and k are read and the result is written to register

2
Regl(y) def detr(y)j(l : Reg(y) + putr(z): Reg(z)) (1)
7j=0
2 .
Reg(y) def Regl(y) + detr(y)flockreg : Locked_Reg(y) (2)
7j=0
Locked_Reg(y) Lf Hllegal_Access(y) + putr(z)releasereg: Reg(z) + 1: Locked_Reg(y) (3)

Figure 1: Specification of integer registers.

1. The process Done is the idle process and represents
termination of the instruction.

The Delayed-Load Instruction — Our example
RISC has a delayed-load instruction in which it is ille-
gal for the instruction executing immediate after the
load to use the register being loaded. The Load in-
struction accesses memory at time ¢, and the result
of the load 1s available at time ¢ 4+ 2. This is rep-
resented in Equation 8 which specifies that at time ¢,
three things happen: 1) the base register j is accessed,
and the base address is placed in the variable B; 2)
memory is accessed with the value placed in the vari-
able V; and 3) the destination register i is locked. At
time ¢ + 1, two actions occur: 1) V is written to des-
tination register 7; and 2) the destination register 7 is
released. (The store operation is analogous and, for
lack of space, has been omitted; see [Har94])

The Delayed-Branch Instruction — 1In a
delayed-branch instruction the instruction after the
branch 1s always executed before the jump. If the
branch is not taken, then the instruction after the
branch is skipped. An additional constraint is that
a delayed-branch instruction may not be immedi-
ately followed by another delayed-branch instruction.
Equation 9 specifies the behavior of the BZ instruction
which has the effect that

e at time ¢, a BZ instruction is fetched and register
R; 1s accessed.

e at time ¢ + 1, if R; 1s not zero, then execution
continues with the instruction after the branch
delay slot.

e at time ¢t + 1, if R; is zero, then a non-branch in-
struction is executed in the branch delay slot and
execution continues with the instruction at Locn
at time ¢t + 2. However, if another BZ instruction

is in the delay slot, then we reach the inactive
process 0, which represents an error state.

3.1.2 Floating-Point Instructions

The floating-point add instruction, Fadd, takes six cy-
cles to compute its result. Instructions that have a
large latency are typically interlocked, so we need to
define interlocked floating-point registers.

One method of keeping instructions ordered prop-
erly is to associate a “lock” with each FP-register (as
we did in the case of the integer registers). The dif-
ference is that accessing a locked integer register is
illegal, and accessing a locked FP-register causes the
processor to stall.

Our RISC has a separate set of thirty-two floating-
point registers that are defined similarly to the in-
teger registers, except that we add two new actions,
lockfreg and releasefreg. Actions putfr and
getfr are the two actions that write and read a
floating-point register. Since the definitions are simi-
lar to the integer registers, we omit them here; their
complete definition may be found in [Har94].

The Fadd instruction Now that interlocked regis-
ters are defined, we define the behavior of the float-
ing point add instruction in Equation 10. The Fadd
instruction: 1) simultaneously accesses its source reg-
isters and locks its destination register; 2) computes
the addition; and 8) simultaneously writes the result
in the destination register and unlocks the destination
register. The abbreviation (1)” represents an n-cycle
delay, 1 : 1...1, which is interpreted as n-cycles of
internal computation.

The processor stalls when an instruction wishes to
access a locked FP-register because the instruction will
not be able to access the FP-register. The only other
option is to execute the process Stall (Equation 4).

def

Instr(PC) = (Non_Branch(PC) Next Instr(PC + 4))
+ Branch(PC)
> Stall(PC) (4)
Non_Branch(PC) def Alu(PC) + Load_Store(PC) + Float(PC') (5)
Stall(PC) %" 1: Instr(PC) (6)
Alu(PC) def getmp(Add R;,R;,Rg)getr;(z)getry(y)putr; (z + y) : Done (7)
def
Load_Store(PC) =
getmpo(Load R;, R;, offs)getr;(B)getmp, g,(V)lockreg; : putr;(V)releasereg; : Done (8)
Branch(PC) ef getmp(BZ R;, Locn)getr,(V):
if V.= 0 then
Non_Branch(PC + 4) Next Instr(Locn))
+ getmpc,4(BZ R;, Locn): 0
else
Instr(PC+ 8) (9)
Float(PC') def getmp(Fadd, FR;, FR;, FRk)lockfregigetfrj(a:)getfrk(y) :
(1:)°
putfr;(z + y)releasefreg; : Done (10)
Figure 2: SCCS description of the 32-bit RISC
Resource Constraints — Most floating-point instruction followed by a floating point instruction or

units have a finite set of resources (e.g., adder, multi-
plier, etc.) and two or more instructions can compete
for these resources thereby altering an instruction’s
timing behavior. We can model a resource as a lock-
able process and include resource requirements in our
instruction specification. For example, we can specify
in the Fadd instruction above that it uses the floating-
point adder for several consecutive cycles. (Other in-
structions may require the floating-point adder and
have to wait if it is in use.) Modeling resources is
described in [Har94].

4 A Two-Issue Superscalar

This section describes a superscalar version of our
RISC that can execute one floating-point and one in-
teger instruction per cycle. If two instructions can be
executed in parallel, then we either have an integer

a floating-point instruction followed by an integer in-
struction. This situation is specified by Equation 11

(Float(PC) x Alu(PC + 4))
+ (Alu(PC) x Float(PC + 4)) (11)

which we rewrite using a summation notation in Equa-
tion 12 and represents a folding of the expression
above. We use the summation notation because it en-
ables us to succinctly specify n-way instruction paral-
lelism. Equation 12 also specifies that execution pro-
ceeds at PC' + 8.

There are no data dependencies to worry about be-
cause each instruction accesses separate register files.

4.1 Instruction Issue

Our top-level instruction issue equation (Equation 4)
must now be modified to take this new two-issue

Do_Two(PC) = > (Al(PC+ i) x Float(PC + j)) | Next Instr(PC + 8) (12)
1,j€{0,4}

Do_One(PC') def (Non_Branch(PC') Next Instr(PC + 4)) + Branch(PC) (13)

Instr(PC') ef Do_Two(PC') > Do_One(PC) > Stall(PC') (14)

Figure 3: Dual issue superscalar specification.

capability into account. We rename our top-
level instruction-issue process Instr (Equation 4), to
Do_One in Equation 13. The processor can now ex-
ecute two, one, or zero (i.e., stall) instruction(s) per
cycle, which we capture in Equation 14. Notice the
use of the priority choice operator, > instead of +;
whenever it is possible to do Do_Two, it is also possi-
ble to do Do_One, and issuing two instructions should
take priority over issuing one when possible.

We can also model multiple instruction issue even
when the instructions have data dependencies between
them. This is done by using the restriction operator,
T, to allow or disallow certain instruction sequences.
Again, we do not have room to specify this here, but

the details may be found in [Har94].

5 Simulation

In this section, we describe how our SCCS processor
specification is simulated within the framework of the
Concurrency Workbench [CPS93], a tool which allows
us to experiment with, simulate, and analyze SCCS
specifications.

A simulation of a processor specification amounts
to loading a program into memory (with putm actions)
and then running the process that represents the pro-
cessor. The semantics of SCCS is operational and
defined in terms of an abstract machine called a la-
beled transition system. The Concurrency Workbench
calculates the labeled transition system of a process,
allowing us to observe the behavior of the program.

The transition graph of a process P is comprised of

transitions of the form A —= B, where
e A represents the state of the system, at time t;
e a is the action performed (transition); and

e B is the new state at time ¢ 4+ 1.

In our transition graphs, each node is surrounded
by a box, and represents the current state of the pro-
cessor at a particular moment in time. Each edge is
labeled with the set of actions that execute on that
transition (e.g., instructions, getr, putr, lockreg,
etc.). For readability, individual actions are enclosed
with “[]” (e.g., [getr, (z)][putr,(2)]). To simplify the
graph, many actions and processes have been omited.
In a complete graph, each particle on an edge that
represents reading/writing or locking/releasing a reg-
ister would have a corresponding complementary ac-
tion. Figure 4 shows the transition graph of an integer
add instruction followed by a move instruction.

When executing an illegal instruction sequence,
11 - +1n, we reach the error state 0. Here, the tran-
sition graph is

i1 in

for some state o.

If two instructions, 7 and j, can execute in paral-
lel then an edge in the transition graph contains the
action product 7 - j. In terms of the transition graph

27
then, o/ — o' for states o’ and o”.

6 Conclusions

In this paper we have presented a technique for for-
mally specifying the timing properties of instruction-
level parallel processors using SCCS, a synchronous
process calculus. The timing properties specified are
delayed loads and branches, interlocked floating-point
operations, and multiple instruction issue.

We have also shown how we can simulate our pro-
cessor using the Concurrency Workbench. The tran-
sition graphs of the preceding section are precisely
what the workbench produces. From these transition
graphs we can deduce illegal instruction sequences.
Also, by observing when an instruction starts and
completes, the transition graphs yield information

t: ‘Instr(PC) x Registers x Memory x FP_Regz'sters‘

[Add Ry, Ry, Rs [getry(z)] [getrs(y)] [puty(z +y)]

t+1: ‘ Instr(PC + 4) x Registers x Memory x FP_Registers‘
Mov Ry, Ry] [getr, ()] [FEEE,(2)]
t+2: ‘ Instr(PC + 8) x Registers x Memory x FP_Registers‘

Figure 4: Transition graph of Add followed by a Move.

about instruction latencies. We are also able to au-

tomatically derive instruction scheduling parameters
from the transition graphs.

Another benefit of using SCCS (and the Work-

PhD thesis, North Carolina State Univer-
sity, Raleigh, NC, 1994. Department of
Computer Science.

bench) is that we can also verify that our specification [AMC93] Ed Harcourt., Jop Maul.ley, anFl Todd
has some important properties. For example, we can Cook. . Specification of msﬁructwn—level
verify that there exists mutual exclusion on the regis- parallfllsm. In Pmcegdmgs of NA-
ters (both integer and floating-point). This is done by PAW’93, the North {lmemcan Process Al-
formulating the mutual exclusion property in a tem- gebra Workshop, 1993.
poral logic (the Workbench also provides such a logic) [HMC94] Ed Harcourt, Jon Mauney, and Todd
and showing that the SCCS specification satisfies the Cook. Functional specification and sim-
logic expression. ulation of instruction set architectures.
In Proceedings of the International Con-
References ference on Simulation and Hardware De-
scription Languages. SCS Press, 1994.
[CFHM93] Todd A. Cook, Paul D. Franzon, Ed A. [Mil83] Robin Milner. Calculi for synchrony and

Harcourt, and Thomas K. Miller. System-
level specification of instruction sets. In
ICCD 93, Proceedings of the International
Conference on Computer Design, 1993.

[CH94] Todd A. Cook and Ed Harcourt. A func-
tional specification language for instruc-
tion set architectures. In ICCL: Proceed-
wngs of the International Conference on

Computer Languages, 1994.

[CPS93] Rance Cleaveland, Joachim Parrow, and
Bernhard Steffen. The Concurrency Work-
bench: A semantics-based tool for the
verification of concurrent systems. ACM
Transactions on Programming Languages

and Systems, 15(1):36-72, January 1993.

[Har94] Edwin A. Harcourt. The Formal Speci-
fication of Instruction Set Processors and

the Derwation of Instruction Schedulers.

asynchrony. Journal of Theoretical Com-

puter Science, 25:267-310, 1983.

