From Processor Timing Specifications to
Static Instruction Scheduling

Ed Harcourt!, Jon Mauney?, Todd Cook®

! Chalmers University of Technology, Géteborg, Sweden
2 North Carolina State University, Raleigh, NC 27695, USA
3 Rutgers University, Piscataway, NJ 08855, USA

Abstract. We show how to derive a static instruction scheduler from a
formal specification of an instruction-level parallel processor. The math-
ematical formalism used is SCCS, a synchronous process algebra for
specifying timed, concurrent systems. We illustrate the technique by
specifying a hypothetical processor that shares many properties of com-
mercial processors (such as the MIPS or SuperSparc) including delayed
loads and branches, interlocked floating-point instructions, resource con-
straints, and multiple instruction issue.

We derive parameters necessary for instruction scheduling by developing
algorithms that operate on the labeled transition systems generated by
the operational semantics of SCCS. From the labeled transition system
we also employ a modal logic, the modal p-calculus to determine whether
there are any illegal instruction sequences or instruction sequences that
could be executed in parallel.

1 Introduction

The problem of automatically generating a code-generator from a machine de-
scription has been well studied [AGT89, Dav86, Fra89]. Giegerich [Gie90] sub-
sequently pointed out that these descriptions were not grounded in any formal
framework and, therefore, while they were useful for compiler generation they
were not useful for such important tasks as hardware/compiler verification, syn-
thesis, and simulation.

In most microprocessors, the temporal and concurrent properties of the in-
structions are visible to the users (compilers) of the processor. For efficiency, the
user (instruction scheduler) must reorder program instructions taking these tem-
poral and concurrent constraints into account. Since it would be useful to have
an instruction scheduler automatically generated it is necessary, then, to include
instruction timing properties in the machine description. In contrast with ma-
chine descriptions for code generators, there is very little research dealing with
specifying the temporal properties of an architecture and deriving an instruc-
tion scheduler [BHE91, PF94] and no research on the formal specification of these
timing properties. Also, ours is the only method to consider multiple instruction
issue capabilities. As a measure of expressiveness, specifications written in the
syntax of [BHE91, PF94] can be expressed in our formalism. Also, we are more
general as we can specify timing constraints not expressible in [BHE91, PF94].

We present a technique for deriving instruction scheduling information from
formal timing specifications of RISC style architectures. We illustrate the tech-
nique with a hypothetical processor that shares many properties of commer-
cial processors, including delayed loads and branches, interlocked floating-point
instructions, and multiple instruction issue (Superscalar). The specification is
formal and suitable for use in verification and simulation [HMC93].

In this paper we briefly introduce our technique of specifying a processor
(detailed in [HMC94a, HMC93]) and then show how instruction scheduling in-
formation is derived from the specification.

As our mathematical formalism, we use SCCS, a synchronous process al-
gebra designed for specifying timed, concurrent systems [Mil89, Mil83]. There
are many reasons for choosing SCCS. First, SCCS allows us to ezplicitly specify
the temporal and concurrent properties of a processor. Second, SCCS is for-
mally defined and provides a variety of techniques for proving and verifying
properties about SCCS descriptions. Third, there is an available tool, the Con-
currency Workbench [CPS93], which allows us to interactively experiment with,
analyze, and simulate our SCCS processor descriptions. Finally, SCCS allows us
to describe a processor at a variety of levels of abstraction, from a high-level
specification to lower organizational and implementation levels.

In specifying the timed/parallel behavior of machine instructions we are con-
cerned with a level of abstraction independent of hardware implementation. For
example, in a delayed-load architecture the user needs only be concerned with
the delay-slot following a load instruction and not with the cause for the delay.
As another example, most pipelined architectures employ forwarding hardware
that allows most integer register-register instructions to execute in one cycle.
The user should not have to understand the forwarding hardware in order to
discover that the instruction sequence

Add R1, R2, R3
Mov R2, R1

is legal.
This research is part of a larger project of designing a general architectural

description language [HMC93, CFHM93, HMC94b, CH94].

2 A Synchronous Calculus of Communicating Systems

SCCS, or Synchronous Calculus of Communicating Systems [Mil83, Mil89], is a
mathematical theory of communicating systems in which we can represent a real
system by the terms or expressions of that system. SCCS allows us to directly
represent the temporal and concurrent properties of the system being specified.

Systems specified by SCCS are composed of two entities, actions and pro-
cesses. Processes are built from expressions whose syntax is given in figure 1.
Actions communicate values and can either be positive (e.g. in) or negative (e.g.
out). Positive actions input values, and negative actions output values. Two

actions o and @ associated with two processes running in parallel can communi-
cate by the fact that they are complements of the same name. Each process must
perform an action (that is, use one or more of its ports) on each clock cycle. A
process not wishing to perform an action may execute the idle action, written
as 1.

We introduce SCCS through an example of a simple pipeline. Consider a two
stage pipeline where each stage adds one to its input and has the overall effect
of receiving a value v at time ¢ and outputting v 4+ 2 at time ¢ 4 2.

One stage in our example pipeline is represented in SCCS by

S(z) = in(y)out(z) : S(y+1) (1)

Equation 1 specifies that on clock cycle ¢, S i1s a process with current output z
and input y, and that at time ¢ + 1, S becomes an process with current output
y + 1. In Equation 1,

— %7 ig called the prefix operator. In general, the expression a : P specifies
that at time ¢ do action a, and then at time ¢ + 1 proceed with process P.

— in(y)out(z) is a product of actions specifying that the two particulate actions
(or particles), in and out, occur simultaneously. This action can also be
thought of as reading y on port in and sending z on port out where z is the
current state of S which was computed in the previous cycle.

— S(z) is defined recursively. Recursive definitions allow for the modeling of
non-terminating processes.

— S is parameterized and contains the arithmetic expression y + 1.

The semantics of SCCS is given formally in [Mil83].

P(z1,22,...,%n)) Parameterized process definition
1, Done Idle process

0 Inactive process

Ex F Parallel composition

F4+F Choice of E or F

EpF E or F with preference for E
ai(z1)az(z2) - an(zn): E Synchronous action prefix with values
Zie] F; Summation over indexing set [
ETL Action Restriction

E\\L Particle Restriction

E[f] Apply relabeling function f

Fig. 1. Syntax of SCCS expressions

2.1 Connecting Processes

The x combinator produces parallelism and allows for new processes to be con-
structed from other processes. The process A x B represents processes A and B
executing in parallel. If two processes joined by product contain complementary
action names, then these processes are joined by what may be thought of as
wires at those ports. Hence, these processes may now communicate.

Given Equation 1, we can now construct a two stage “add 2” pipeline from
two “add 1”7 processes. There is a problem though: the process S x S does
not contain complementary action names (that is, the pipeline stages are not
connected), but the output of the first S stage must be fed into the input of the
second S stage. SCCS allows us to relabel actions using a relabeling combinator.
Relabeling out to @ in the first S and in to « in the second occurrence of S
provides the desired connection between the stages:

def

Add2(z,y) = (S(x)[¢1] x S(y)[#2]) T {in, out} (2)
¢1 =out—a, ¢y=1in— «a

In Equation 2,

— ¢1 1s a relabeling function that means change the port name out to a. ¢,
changes in to a.

— S[¢] means apply relabeling function ¢ to process S.

— S 1 {in, out} is the restriction combinator applied to process S. Restriction
alters the scope of an action by “internalizing” (or “hiding”) actions from
the environment and exposing others. Hence, in this example, in and out
are made known to the environment and « is internalized.

The net effect of Equation 2 is to construct a pipeline of two stages and two
external ports where each stage adds 1 to its input.

SCCS includes another combinator, the + combinator, for constructing pro-
cesses. The process A+ B represents a choice of performing process A or process
B, where the choice taken depends upon the actions available within the envi-
ronment. The process A; + A3 + - - - A, is abbreviated to 2?21 A;.

2.2 Extensions to SCCS

We introduce two extensions to SCCS that will aid us in writing processor spec-
ifications. Frequently, we wish to execute two processes A and B in parallel,
where B begins executing one clock cycle after A (e.g., issuing instructions on
consecutive cycles). This serial operation can be modeled by A x (1 : B). We
define the binary combinator Next to denote this process:

ANext B Y Ax(1:B)

Another useful operator is the priority sum operator, > [CW91]. If in the
process A+ B both A and B can execute, then it is non-deterministic which one
is executed. We can prioritize + so that if both A and B can execute, then A is
preferred, denoted by A > B.

3 Specifying a Processor

We now briefly describe the method of specifying a processor in SCCS. More
details are provided in [HMC93, HMC94a]. We model a processor as a system
of interacting processes where registers and memory interact with one or more
functional units. Equation 3 represents such a system at the highest level:

Processor = (Instruction Unit x Memory x Registers) 1 I (3)

where a processor consists of an instruction unit operating in parallel with a
memory and registers and [is the set of all instructions.

For each register, i, we define a process with actions getr,(z), putr,(z),
lockreg;, and releasereg; for reading, writing, locking, and releasing register
t. The lock is required to trap an instruction trying to read a register while it
is being loaded from memory. The registers are specified in such a way that
SCCS’s bottom state, 0, 1s reached when another instruction tries to access a
locked register.

The definition of a process Memory is exactly analogous to that of Registers,
except that memory cells do not have locks associated with them. The actions
getm;(z) and putm,(z) read and write memory cell i. The definition of processes
Registers and Memory is straightforward and is given in [HMC93].

3.1 Instruction Issue

Given our definitions of Registers and Memory and using a program counter, PC,
we now describe a process Instr(PC') (Equation 4) that specifies the behavior of
our processor’s instructions. Instr(PC') partitions instructions into two classes,
Branch and Non_Branch. Non_Branch instructions are further divided into three
classes, arithmetic (Alu), load and store (Load_Store), and floating-point (Float).

Instr(PC) = (Non_Branch(PC) Next Instr(PC + 4))
+ Branch(PC)

> Stall(PC) (4)
Non_Branch(PC) def Alu(PC) + Load_Store(PC') + Float(PC) (5)
Stall(PC) = 1: Instr(PC) (6)

There are three possible alternatives of Instr(PC):

— A non-branch instruction may execute, in which case the next instruction to
execute is at PC + 4; the first line of Equation 4 describes this situation.

— A branch instruction may execute. The next instruction to execute cannot
be determined until it is known whether the branch will be taken or not.
Consequently, the next instruction executed is controlled by Branch(PC).

— If no instruction can execute, then the processor must stall (Equation 6).
The > operator (section 2.2) is used here because the processor should stall
only when no other alternative is available.

Arithmetic Instructions. Our architecture fetches instructions from memory
using a program counter, PC. The action

getmp (Add Ri,R;j, Rk)

represents fetching an Add instruction from memory. One way to understand
this is that if Memory(PC') contains the above instruction it now matches (or
synchronizes) with the action getmpo(Add R;,R;,Rg) defined by ALU(PC).
From a user’s view, the instruction Add R;, R;, Ry appears to take one cycle
to execute. The underlying hardware may be more complex, but at our level we
are concerned only with external behavior.
The process

Alu(PC) def getmp(Add R;,R;,Rg)getr;(z)getry(y)putr;(z+y) : Done (7)
represents the Add instruction: at time ¢, source registers j and k are read (by the
actions getr;(x)getry(y)) and the result is written to destination register i (by
the action putr;(z+y)). In fact, Equation 7 describes the same final computation
as the register transfer statement

Reg[i]l + Regl[jl + Reglk]

except that the SCCS equation also specifies that registers are read and the
result is written atomically (i.e., executes in a single cycle). The process Done
is the idle process and represents termination of the instruction.

Load and Store Instructions. In a delayed-load architecture (such as the
MIPS R3000) an instruction may not immediately use the register being loaded.
The Load instruction accesses memory at time ¢, and the result of the load is
available at time ¢ 4 2. This is represented by,

Load_Store(PC) def

getmpc(Load R;, R;, offs)getr;(B)getmp,g,(V)lockreg; :

putr,(V)releasereg, : Done (8)
Equation 8 specifies that at time ¢, three things happen:

1. The base register j is accessed, and the base address is placed in the B.
2. Memory is accessed with the value placed in V.
3. The destination register ¢ is locked (using the action lockreg;).

At time ¢ 4+ 1, two actions occur:

1. the value V is written to destination register ¢ (with the action putr,(V)).
2. the destination register i is released (with the action releasereg;).

The result is not available until time ¢ 4 2.

Equation 8 specifies both the computation of the load instruction and its
temporal properties. For instruction scheduling we are only interested in the
timing information but, to be complete, we also include the computational aspect
of the instructions.

3.2 Interlocked Floating-Point Instructions

Our processor has a separate set of thirty two floating-point registers. Actions
lockfreg;, releasefreg;, putfr,(z), and getfr;(z) lock, release, write, and
read floating-point register i. (We should note that the actions lockfreg; and
releasefreg; model the scoreboard register of pipelined processors. The score-
board is a bit vector where each register has a corresponding bit in the vector
which is, essentially, a semaphore.) The definitions are similar to the integer reg-
isters and can be found in [HMC93]. One difference, however, is that accessing a
locked floating-point register is not illegal, as is the case for the integer registers.
Accessing a locked floating-point register causes the processor to stall (with the
process Stall).

One situation that arises with multi-cycle floating-point instructions is that
they usually share a limited set of internal resources, R (e.g., adder, multiplier,
rounder, etc.). A particular instruction requires resources from R at various times
during its execution. A scheduler must know the resource requirements of the
instructions so that it can schedule them appropriately. We model each resource

r € R as a process with two actions, get,, and release,.

The Fdiv Instruction. Having defined interlocked floating-point registers and
resources, we can specify the behavior of the floating-point divide instruction:

Float(PC') def getmp (Fdiv FRZ',FRj,FRk)lockfregigetfrj(m)getfrk(y):

getadder " releasezgder :
ot . N T cnaa .
getgivider : (1:)°'releasegjiyider :
getadder : releaseggder :

putfr,(z/y)releasefreg; : Done (9)

The Fdiv instruction

accesses its source registers (getfr;(z)getfry(y));

locks its destination register (lockfreg;);

uses the adder for one cycle;

uses the divider for eight consecutive cycles;

uses the adder for two consecutive cycles;

writes the result in the destination register (putfr;(z/y)); and

-1 O Ot i W N =

releases the destination register (releasefreg;).

The abbreviation (1 :)” represents the n-cycle delay, 1 : 1...1, which is inter-
preted as n-cycles of internal computation.

The processor stalls when an instruction wishes to access a locked FP-register
or resource. Because the instruction will not be able to access the FP-register or
resource the only other option is to execute the process Stall (Equation 4).

4 A Two-Issue Superscalar Processor

This section describes a superscalar version of our processor that can issue one
floating-point and one integer instruction per cycle. If two instructions can be is-
sued in parallel, then we have either an integer instruction followed by a floating
point instruction or a floating-point instruction followed by an integer instruc-
tion. This is specified by Equation 10.

(Float(PC) x Alu(PC +4)) + (Alu(PC) x Float(PC + 4)) (10)

Equation 11 extends Equation 10 by using a summation notation that suc-
cinctly allows us to specify n-way parallelism (where ¢ # j). Equation 11 also
continues execution at PC' + 8:

Do_Two(PC') def

> (Alu(PC +i) x Float(PC + j)) | Neat Instr(PC +8) (11)
i,j€{0,4}

There are no data dependencies to worry about because each instruction accesses
separate register files.
If we rename equation 4 as Do_One, the dual issue case can be written as:

Instr(PC) def Do_Two(PC) 1> Do_One(PC) 1> Stall(PC') (12)

Notice the use of the priority choice operator, > (section 2.2) instead of +;
whenever it is possible to do Do_Two, it is also possible to do Do_One, and
issuing two instructions should take priority over issuing one when possible.

We can also model multiple instruction issue when the instructions have data
dependencies between them. For example, if the processor has two integer units,
and can issue two integer instructions in parallel, we now have the problem
that the two instructions can have data dependencies between them. This is
done by using the restriction operator, 1, to allow or disallow certain instruction
sequences [HMC93].

5 Instruction Scheduling

We now introduce the instruction scheduling problem and show what parameters
need to be extracted from the specification. The next section shows how these
parameters are derived from the SCCS specification.

Given a sequence of instructions, S, instruction scheduling is the problem of
reordering S into S’ such that S’ has two properties: 1} The semantics of the
original program S is unaltered, and 2) the time to execute S’ is minimal with
respect to all permutations of S that respect the semantics of S.

There are two types of scheduling constraints—precedence and resource. A
precedence constraint (or data dependency) is a requirement that a particular

instruction i execute before another instruction j due to a data dependency
between i and j. Data dependencies fall into three categories: true (or forward
dependency), anti-, and output. Hardware designers know these dependencies
as the three types of data hazards: RAW (read-after-write), WAR (write-after-
read), and WAW (write-after-write).

Dependencies are represented graphically by a directed acyclic graph (DAG)
G where G is composed of a set of vertices V' and a set of edges F, G = (V, E).
Each vertex of the graph is an instruction from the program and a directed edge,
(i,7), from vertex i to vertex j means j depends on i. The DAG is augmented by
labeling each edge, e, with a minimal latency (delay), d(e), that represents the
least amount of time, in cycles, that must pass after ¢ begins executing before j
can begin.

5.1 Resource Constraints

An architecture consists of a multiset, R, of resources. Each instruction uses, on
each clock cycle that it is executing, resources from R. First, we need a definition.

Definition 1 The length of an instruction i, is the minimum number of cycles
needed to execute z.

In our case, length(i), is the number of cycles needed to execute 7 in the
absence of all hazards. Intuitively, one way to compute length(i) is to execute i
in isolation.

If an instruction i executes for length(i) cycles then the resource usage func-
tion for instruction i, p;, maps clock cycles to subsets of R (ie., p; : t —
Pow(R) s.t. 0 < ¢t < IN). When ¢ > length(i) then p;(¢t) = §. For example,
padd(2) represents the multiset of resources used on clock cycle 2 by the Add
instruction.

The scheduling constraint on resources, then, is that at any particular time ¢,
the resources needed by the instructions executing at time ¢ is not greater than
the available resources.

As an example, the resource set of the MIPS/R4000 floating-point unit is
given below [KH92].

R= {unpack, divider, shifter, adder, rounder, mult_stagel,

mult_stage2, exception}

5.2 Deriving an Instruction Scheduler
To build an instruction scheduler we need to determine the following information:

— a table of latencies for all possible pairs (i, j) of instructions. This allows us
to annotate each edge in the program dependence graph with d(e) (where
e = (4,5)), the minimal latency.

— for each instruction, ¢, the resource usage function, p;.

We first present an algorithm for deriving the delay function d from our
processor specification. Essentially, the delay for an instruction pair (4, j) is cal-
culated by initiating ¢ and then observing how long it takes until j can begin.
Most architectures resolve WAR and WAW hazards and schedulers only have to
deal with RAW hazards. We will be more general and calculate the delay for an
instruction pair (4,) in the presence of a hazard h, where h € {RAW, WAR, WAW}.

In order to “execute” an instruction and capture useful information we need
to know how to simulate an SCCS agent. An SCCS agent determines an au-
tomaton (in our case finite), called a labeled transition system or LTS. It is the
LTS that our algorithms use to determine the scheduling information.

Definition 2 A labeled transition system (LTS) is a triple (P, Act,—)
where P s the set of agents in SCCS, Act is the set of actions, and — is the
transition relation, a subset of P x Act x P. A state, g, can be designated as
the start state.

When p,q € P and o € Act and (p, o, q) €= we write p 3 ¢ to mean that
“agent p can do an « and evolve into ¢.” Agents p and ¢ represent the state of
the system at times ¢ and ¢ 4+ 1 respectively.

The algorithm to calculate instruction latencies from the SCCS processor
description is given in figure 2. Construct_Latency_Function works by executing
an instruction ¢z and counting cycles until a subsequent instruction j can begin.
It does this for all possible pairs of opcodes for each data hazard. The instruc-
tion latency is the amount of time between initiating ¢ and initiating j. Notice,
however, that it is still possible that after j begins it may stall for some other
reason, which will be, most likely, a resource hazard.

Algorithm Construct_Latency_Function requires, as input, the labeled tran-
sition system (P, g, Act, —). Essentially, instruction 7 is initiated and 1 actions

. L. i .
are executed until we reach a state ¢’ such that the transition ¢’ — ¢’ is

possible. That is, if we execute ¢ at time ¢ then we subsequently try to execute
j at time ¢ + 1, and if we cannot then we try executing j at time ¢ 4+ 2 and so
on. Eventually j will be able to execute at some future time ¢t + n and we can
conclude that the latency, d(i, j), is n.

The complexity of Construct_Latency_Function is O(mn?) where m is length
of the longest instruction and n is the number of opcodes for the architecture.

5.3 Illegal Instruction Sequences

Algorithm Construct_Latency_Function does not detect illegal instruction se-
quences (e.g., using a busy register in the load delay slot, or having another
branch instruction in the branch delay slot). Since illegal instruction sequences
cause the SCCS process to deadlock, detecting these amounts to detecting dead-
lock in the specification (which we can do for our finite-state system). We do
this by executing all instruction pairs on the specification and identifying which

function Construct_Latency_Function({P, oo, Act, —))
let
Opcodes = {Add, Fadd, BZ, ...} and
Hazards = {RAW, WAR, WAW}

for each (i, h, j) € Opcodes x Hazards x Opcodes do
1) Construct an instruction pair, (i', 5') s.t. i’ uses opcode i,
7' uses opcode j, and hazard h exists from 3’ to j'.

2) let o' be state s.t. og Z—) o
3) delay := 0;

while there is no transition o’ j—l> " do
1) delay := delay + 1
2) let onext be state s.t. o’ L) Onext
3) o= Onext
end while
d(i',h,3") = delay
end for
end let
return(d)
end Construct_Latency_Function

Fig. 2. Algorithm that derives instruction latencies.

ones deadlock. To do this we use the modal p-calculus, a modal logic defined
on the labeled transition systems of SCCS. The formulae of the p-calculus are
generated by the following grammar, where K € Act.

A =true|false | Ay A Ay | A1V As | DA | [K]A | (K)A | pz. A

The logic is essentially the propositional calculus with two additional modal
operators, [K] and (K). ([K] and (K) represent “necessity” and “possibility”
from classical modal logic, usually denoted O and <.) The calculus also includes
the fixpoint operator pz.A which allows us to write recursive logic equations
where the variable x may occur in A.

Immediate deadlock (a process cannot execute any action) is expressed by

the term e
Deadlock = [—]false.

which means that a process cannot perform any action. Here, — is a “wildcard”
that represents the entire action set Act.
If CPU 1s the transition system generated by our SCCS specification then

CPU = [Load R1, (R2)][Add R3,R1,Ri1]eventually(Deadlock)

implies that our processor cannot execute the above Load-Add sequence. In this
situation we consider the latency between the two instructions to be the error

value, L. That is, d(7, h, j) =L. The operator eventually has a standard encoding
using the fixpoint operator p [Win93].

As in algorithm Construct_Latency_-Function we can now selectively gener-
ate all pairs of instructions and check whether the pair deadlocks. We easily
extend this for all instruction sequences of length n. This can potentially lead
to combinatorial problems but, fortunately, n is quite small (less than 10).

5.4 Multiple Issue Instructions

Construct_Latency_Function does not consider multiple issue instructions. That
is, we would like to know which combinations of instructions can execute in par-
allel. These again are identified from the labeled transition system by executing
instruction sequences in parallel. An instruction is an action in SCCS, and two
instructions, ¢ and j, executing in parallel, is the product of these actions, 7 - j.

So if i and j can execute in parallel then the transition ¢/ —2 ¢”' is possible. De-
tecting parallel instruction sequences is similar to deriving latencies except that,
instead of executing instructions sequentially and counting cycles, we execute
the instructions in parallel.

Again, we can employ the p-calculus to determine if CPU |= (i - j)true. For
example, if our processor can execute an integer instruction in parallel with a
floating-point instruction then we expect

CPU |= (Fadd FR1, FR2, FR3-Mov R1,R2)true.

In this situation we consider the latency between the two instructions to be zero.

That is, d(i, h, j) = 0.

6 Computing the Resource Usage Functions

In this section we will compute the resource usage function, p;, for each instruc-
tion 7 of the SCCS processor specification. An instruction’s resource requirements
are specified in the instruction with actions get, and put,.. In order to determine
an instruction’s resource requirements we will need to analyze the actions exe-
cuted by the instructions. In order to do this analysis we need some definitions.

Every action, «, 1s uniquely expressible as a product of powers of particulate
actions, that is, & = a'ay? - -a}*. We denote the particles of an action « as
Part(a), where Part(a) = {aq,..., a5},

Definition 3 The action sort of an agent P, denoted ActSort(P), is the set of
actions that P executes s.t. if P executes action « then a € ActSort(P).

Definition 4 The particle sort of P, denoted PartSort(P), is the set of particles
of ActSort(P) s.t. PartSort(P) = {Part(a) | « € ActSort(P)}.

The particle sort of an SCCS agent is defined in [Mil83].

We need to determine what resources, if any, an instruction requires. If R
is the set of resources of a processor let PartR be the set of particles used to
acquire and release these resources (equation 13).

PartR = {get, | i € R} U {put, | i € R} (13)

The set of particles that an instruction 7 uses to access all of its resources is
defined by PartSort(P) N PartR where P is the SCCS agent that describes i.

6.1 Deriving the Resource Usage Functions

The resource usage function p;, for an instruction z, should precisely specify what
resources 7 uses on each cycle of its execution. To derive p; we simply execute i,
in isolation, and observe what resources ¢ acquires and releases and also when
those resources are acquired and released.

An instruction is using a resource r from the time it gets that resource (using
get,) to the time it releases that resource (using release,). We can visualize
this in terms of the transition system for the instruction:

o B
og— - —>0 —---—> 0 — ---— Done
N— —

'LlSil’lg resource r

where get, € Part(a), release, € Part(3)

Figure 3 gives the algorithm for computing the resource usage functions.

The algorithm works by examining, for each instruction, the transition graph
of the agent that describes that instruction. The algorithm scans the instruction
recording the current set of resources that are in use by searching for get, and
put, actions. The if-statement in the inner-most for-loop has four cases:

1. If both a get, and put, are needed on the same cycle then the resource r is
needed for only one cycle.

2. A get, signifies that the instruction begins using r.

3. A put, signifies that the instruction is finished using r after the current
cycle.

4. Ifno get, or put, is encountered on the current cycle then the set of resources
currently being used is InUse.

The time complexity of the algorithm is O(mnr) where m is the number of
instructions, n is the length of the longest instruction, and r is the size of the
resource set R. However, the size of R, |R|, will typically be small (for example
on the MIPS R2000 it is 13 and on the Motorola 88000 it is 16).

As an example, the algorithm computes the following resource usage function
for the floating-point divide instruction, Fdiv, described earlier.

{adder} ift=2
{divider}if3 <t <9

Praivt) =4 fidder} if10<i< 11
0 otherwise

for each i € P s.t. Sort(i) N PartR # ¢ do
let — and o¢ be the transition relation and start state of 1.
o' := ap; InUse := 0);
for cycle:=1 to length(¢) do
let onext, a be state and action s.t. 6’ — onext;
o= Onext;
if get, € Part(«) and put_ € Part(a) then
pi(cycle) := InUse U {r};
else if get € Part(a) then
pi(cycle) := InUse U {r};
InUse := InUse U{r};
else if put, € Part(a) then
pi(cycle) := InUse;
InUse := InUse —{r}
else
pi(cycle) := InUse
end if
end for
end for

Fig. 3. Algorithm to calculate resource usage functions.

7 Discussion and Conclusions

In this paper we have presented a technique for deriving instruction schedul-
ing information from a formal specification of a RISC/Superscalar architec-
ture. The timing properties specified are delayed loads and branches, interlocked
floating-point operations, and multiple instruction issue. The mathematical for-
malism used is SCCS, a synchronous process algebra designed for specifying
timed/concurrent systems. An instruction-level parallel processor is, in essence,
a set of communicating processes (functional units) which matches the model of
computation SCCS was designed to specify.

The algorithms that derive instruction scheduling information operate on
the automaton induced by an SCCS process. Also, the algorithm that derives
resource usage functions requires that the instructions be specified in the form
detailed 1n section 3.2. This is not restrictive as our formalization coincides, and
is based on, the informal descriptions of resource use described in processor
manuals. We have implemented our processor specification on the Concurrency
Workbench, a verification/simulation tool for SCCS.

References

[AGT89] Alfred V. Aho, Mahadevan Ganapathi, and Steven W.K. Tjiang. Code gen-

eration using tree matching and dynamic programming. ACM Transactions

[BHEO1]

on Programming Languages and Systems, 11(4):491-516, October 1989.
David Bradlee, Robert Henry, and Susan Eggers. The Marion system for
retargetable instruction scheduling. In ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages 229-240. ACM,
June 1991.

[CFHM93] Todd A. Cook, Paul D. Franzon, Ed A. Harcourt, and Thomas K. Miller.

[CHO4]

[CPS93]

[CWOT1]

[Dav8&6]

[Fra89]

[Gie90]

[HMC93]

System-level specification of instruction sets. In ICCD 93, Proceedings of
the International Conference on Computer Design, 1993.

Todd A. Cook and Ed Harcourt. A functional specification language for
instruction set architectures. In ICCL: Proceedings of the International
Conference on Computer Languages, 1994.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concur-
rency Workbench: A semantics-based tool for the verification of concur-
rent systems. ACM Transactions on Programming Languages and Systems,
15(1):36-72, January 1993.

Juanito Camilleri and Glynn Winskel. CCS with priority choice. In LICS
91: IEEE Symposium on Logic in Computer Science, pages 246-255, 1991.
Jack W. Davidson. A retargetable instruction reorganizer. In Proceedings
of the SIGPLAN ’86 Symposium on Compiler Construction, pages 234-241,
1986.

Christopher W. Fraser. A language for writing code generators. In ACM
SIGPLAN ’89 Conference on Programming Language Design and Imple-
mentation, pages 238-245, 1989.

Robert Giegerich. On the structure of verifiable code generator specifica-
tions. In ACM SIGPLAN ’90 Conference on Programming Language Design
and Implementation, pages 1-8, 1990.

Ed Harcourt, Jon Mauney, and Todd Cook. Specification of instruction-
level parallelism. In Proceedings of NAPAW’93, the North American Process
Algebra Workshop, 1993.

[HMC94a] Ed Harcourt, Jon Mauney, and Todd Cook. Formal specification and simu-

lation of instruction-level parallelism. In Proceedings of the 1994 European
Design Automation Conference. IEEE Computer Society Press, 1994.

[HMC94b] Ed Harcourt, Jon Mauney, and Todd Cook. Functional specification and

[KH92]
[Mil83]
[Mil89]
[PF94]

[Win93]

simulation of instruction set architectures. In Proceedings of the Interna-
tional Conference on Stmulation and Hardware Description Languages. SCS
Press, 1994.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall,
1992.

Robin Milner. Calculi for synchrony and asynchrony. Journal of Theoretical
Computer Science, 25:267-310, 1983.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
Todd Proebsting and Chris Fraser. Detecting pipeline structural hazards
quickly. In POPL’94, Proceedings of the 21°" annual symposium on princi-
ples of programming languages, 1994.

Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

