A Framework for Representing Parameterised Processes”

Ed Harcourt Pawel Paczkowski K.V.S. Prasad

Department of Computing Science
Chalmers University of Technology
412 96 Goteborg, Sweden

e-mail: {harcourt,pawel,prasad }@cs.chalmers.se

fax: +46 31 16 56 55
November 15, 1995

Abstract

We describe a faithful representation of value-passing recursive parametric CCS processes
in Alf, an implementation of Martin-Lof’s constructive type theory. The representation is in-
teresting because we borrow as much as possible from Alf including the domain of value and
state expressions and the ability to evaluate them. Usually substitution of either channel values
for channel variables and processes for process variables play a necessary role in the semantics.
However, substitution is also borrowed from Alf by using higher-order functions. The main im-
portance of this representation is that it allows us to borrow Alf’s off-the-shelf theorems about
data types and provides a uniform setting for doing various kinds machine assisted proofs, such
as bisimulation proofs; equational reasoning, verification of Hennessy-Milner logic formulas.

1 Introduction

Machine checked proofs of CCS processes require finite representations of the processes. However,
for infinite value and state domains, the traditional semantics of CCS reduces a value-passing
process to a potentially infinite sum of processes and a parametric process (a process parameterised
by a state variable) to a potentially infinite family of processes [Mil89]. Our goal is to find a
representation of value-passing parametric CCS processes suitable for use with Alf, a proof checker
for Martin Lof’s constructive type theory [CNSvS95]. While we use Alf as our implementation
language it is important to realize that the problems we address are not created by Alf but would
arise, to some extent, in all logical frameworks such as Coq, HOL, LEGO, Nuprl, Isabelle, or PVS.

One of the best reasons for using Alf is that it lets us combine various proof techniques into
a single system. First, our representation lets us use Alf to do proofs about data domains (both
channel and states). For example, without introducing any of our own equivalences, Alf can equate
the process out!(z + y).p with the process out!(y+ z).p by using an already proved theorem about
he commutativity of addition. Another important source of Alf’s power is its ability to do induction
over any inductively defined data type. We can also introduce our own equivalences. For example
we have introduced three different relations in Alf; bisimulation, an equational proof system, and
Hennessy-Milner logic that relates processes with formula from a modal logic.

*Funding from the Swedish Government agency TFR, and ESPRIT BRA CONCUR2

For the present paper we view Alf as the typed lambda calculus extended with dependent types.
So that we can write “useful” processes we allow both the domains of values and states to be infinite
(e.g., integers, lists, etc.). The aim of this paper is not to do to equivalence proofs about processes
in type theory — first we need an adequate way of expressing value-passing parametric processes.

However, in preliminary experiments we have been successful in doing bisimulation proofs and
also model checking infinite state processes against formulae of Hennessy-Milner logic. In particular,
having represented CBS, the calculus of broadcasting systems, [Pra9x, Pra93] in Alf and defined
strong bisimulation, Prasad has shown that strong bisimulation is a congruence relation with respect
to the operators of CBS. Also, in a prioritised version of CBS [Pra94] Jgrgen Andersen has verified in
Alf that a distributed sorting algorithm (written in CBS) is correct w.r.t. an abstract specification
of sorting (which is expressed as an Alf type). In these experiments Alf’s ability to do proofs by
induction was invaluable. Both of these experiments are yet to be reported.

Motivation. If we want machine representation, we often need to worry about technical aspects
that are usually ignored (e.g., the language of data/state expressions, value and process substitu-
tion, renaming data and process variables, etc.). Such details are understandably elided in normal
discourse as they are usually well understood by the general readership. As we will see in our
representation, employing a suitably powerful framework such as Alf allows us to address aspects
such as substitution, variable renaming, and data expressions by appropriately borrowing from the
framework. Care must be taken, however, not to borrow too much as the representation can become
unsound. This borrowing is similar to using Higher-Order Abstract Syntax [EP88, DFH95].

Our representation is general because we take the value and state domains from Alf by param-
eterising the representation on a type variable for each, greatly simplifying our syntax of processes
as we no longer specify a syntax and semantics for channel and state expressions. In this manner,
channel and state expressions are taken from Alf and CCS variables are identified with Alf vari-
ables. Also, substitution of values for these variables is also borrowed using higher-order functions.
However, care must be taken to ensure that this borrowing is done in a sound manner. For exam-
ple, it is not sound in Alf to naively use Alf’s recursion for process recursion as this creates infinite
objects, which can lead to an inconsistent theory [Coq93]. This is because in Alf all functions must
terminate and processes usually do not.

Subsequently, we attempt to implement process recursion using an explicit process fix-point
construct fix(X = F). The operational rule for recursion involves a process substitution F{P/X}
which we would also like to borrow from Alf through function application. However, this too is
unsound as the normal type of the fix-point construct is impredicative and the syntax of processes
will not be inductively defined in the normal way. These considerations lead us to a “correct”
solution which will be to implement parametric defining equations.

We call our representation a framework because it is parameterised on two type variables, one
for the type of values that may be passed on channels and the other for the type of state. This
paper discusses the Alf representation for CCS. We have also implemented CBS, the Calculus of
Broadcasting Systems [Pra93].

Outline of the paper. The rest of the paper is outlined as follows. Section 2 introduces the
concrete syntax and operational semantics of value-passing CCS that we implement and discusses
how functions model value-passing. Section 3 discusses process recursion with a fix-point construct
and the problems created when implemented in Alf. Section 4 provides a brief introduction to
Alf, and shows how the syntax of CCS is represented in type theory. With Alf now at hand, we
show how defining equations are implemented soundly, using Alf functions. Section 5 shows how

the operational semantics of CCS is implemented as an inductively defined Alf relation. Section 6
discusses how we can already do some proofs about value-passing CCS processes in Alf. Section 7
outlines what an “interpreter” for CCS is and how one is written as an Alf function. Related work
is briefly discussed in Section 8. Section 9 concludes.

2 CCS Preliminaries

CCS is a formalism where processes are terms of a simple language of process constructors. The
behaviour of a process is usually given in terms of the possible transitions of the process. Transitions
of the form p — ¢ express process p’s ability to perform some action a and evolve to a new
process .

The syntax of CCS we study is given by the following grammar:

p = chle,.p | chlz.p | plp | p+p | P\l | plf] | 0 | Ales) | if b then p (1)

where ch comes from a countable set of channel names Chan, e, from a language of channel
expressions, = from a countable set of channel variables Var, A from a set of process variables,
es from a language of state expressions, and b from a language of boolean expressions. (Precisely
speaking, e,,es, b belong to a many-sorted language of expressions which has sorts of channel,

state and boolean expressions.) A term A(es) refers to a process constant A parameterised by e;.

Associated with A is a definition of the form A(z) 4f » where z is a state variable and Ales)

may occur in p. To model multiple process parameters we allow the state be a tuple type. The
function f is a channel relabelling function and £ is a set of channel names. Let P be the set of
processes generated by (1). Pure CCS'is the sub-calculus without value-passing, the conditional if,
and process parameters. We include only the if-then construct as the if-then-else can be encoded
using summation (see [Mil89]). We then use the if-then-else construct freely.

Channel variables range over a set of channel values Value and closed channel expressions
evaluate to a value in Value. State variables range over a set of state values State and closed state
expressions evaluate to a value in State. Thus, we assume some evaluation scheme for expressions
and we will identify closed expressions with their values. The same applies to boolean expressions
which evaluate to true or false. The set of actions Act, is defined by expression (Chan x {!} X
Value) U (Chan x {7} x Var) U{7}. Example members of Act, are ch?z, ch!5, and 7 (without using
tuple notation).

The operational semantics of CCS is given in Figure 1 and describes a transition relation
—C P x Act; x P. We only consider closed processes. That is, processes where all variables in
channel and state expressions are bound by an input prefix.

Channel Variable Substitution. The rule for reading a channel, In, says that the process
ch?x.p may receive a value v on channel ch and become p[v/z] which means v is substituted for
all free occurrences of z in p. The value substitution p[v/z] is standard and defined as in [CY94].
The input prefixing rule describes a potentially infinite number of possible transitions, one for each
possible value v. Under this interpretation, assuming v € IN, the process ch?xz.p is equivalent to an
infinite summation of processes in pure CCS ch?0.p[0/z]+ ch?1.p[1/z] + ch?2.p[2/z] + - - -, usually
written Y o ch?z.p[v/x]. However, this creates infinite terms in CCS, which we need to avoid.
Moreover, we would like to avoid implementing our own substitution used in the rule In because
implementing explicit channel variable substitution (that avoids possible capture of the channel
variables) commits us to implementing our own language of data expressions. We avoid channel

Out ———— a=71ora=chlv In

a.p —p ch?z.p ity plv/z]
P g —q
SumL —2—F SumR —L 1
/ !
p+qg—p P+ q—q
o ’ a ’ alv. a?y
2 2
ParL % ParR % ParT p—)pT (i
pla—11lq pla—npld plea—p|¢
o / o 12
Relt Pf(l Rest 2P ¢
[0}
o1 == L] P\E— P\
plv/z] = 1/ def p—7
Def —————— A(z) = p Cond — —
Alv) —p (if true then p) — p’

i The function f: Act — Act only changes channel names and leaves T and values unaltered.

1 S is alist of channels and o € S means « uses a channel in S.

Figure 1: Operational semantics of CCS.

variable substitution and infinite summation by letting CCS channel variables be represented by
Alf variables using lambda abstraction. We replace rule In with the following rule In)

(2)

In) o7
ch? z.p =% (Az.p)v

where z may occur free in p and the input prefixing operator ? has the type Chan x (Value —
P). Open processes are represented using lambda abstraction and variable substitution p[v/z] is
implemented using function application. Using Alf in this manner we identify Alf variables with
channel variables and channel expressions with expressions of some Alf’s type. We justify this in
section 5.

3 Recursion

Consider CCS without process constants and conditionals and assume we have a type of process in
Alf called Proc(V) where V' is the type of channel values. It is tempting to try and borrow both
recursion and the conditional from Alf by representing a recursive process p by a recursive function
p of type Proc(V). For example, consider a one-place buffer cell that loses even integers.

Cell ©" in?2.if even z then Cell else outlz.Cell (3)

In Alf, Cellis a recursive function of type Proc(V') and the if-statement is also Alf’s.
A parameterised process can be represented as function from a state of type S to a process. For
example, equation 4 defines a simple read/write register that stores natural numbers.

Reg(y) def write?z.Reg(z) + read!y. Reg(y) (4)

In pure CCS the usual semantics of Reg is that it represents an infinite family of processes
{Reg; | i € IN} which we represent functionally by making Reg a recursive function of type N —
Proc(IN). The case without parameters in the beginning of this section is really just the special
case where Cellis of type Unit — Proc(V') where Unit is the unit data type with one value unit.

If all we wanted from a process definition was to determine its transitions then borrowing Alf’s
recursion would work (see [Pet94] for a related theorem about implementing a CBS interpreter for
Haskell). However, our main goal is to be able to machine check proofs about processes in Alf and
in Alf, every recursive function must be defined in terms of a structurally smaller argument. That
is, the recursion must be guaranteed to terminate. However, as can be seen in equations 3 and 4,
processes are often non-terminating and using Alf’s recursion as process recursion creates “infinite
objects” which, in Alf (and constructive type theory in general), are not sound [Coq93].

3.1 A Fix-point Construct

The obvious way to avoid using Alf’s recursion thereby inhibiting the creation of infinite objects is
to implement recursion explicitly. We can do this either by implementing defining equations or by
extending the syntax of processes with a fix-point constructor fix(X = F), where X is a process
constant that may occur in a process F. First, we consider the case of adding an explicit fix-point
construct.

With the fix-point construct we need to extend the semantics with a transition rule for fix
which, intuitively, “unwinds the recursive definition once”.

F{fix(X = E)/X} = F'
fix(X = F) = F/

Rec

This rule requires a form of process substitution £{P/X}. Keeping to our goal of trying to borrow
as much from Alf as possible, we would like to identify process variables with Alf variables and
borrow Alf’s substitution for process substitution (as we did in the case for channel variables). In
such case, in the rule Rec, F would be a function from a process to a new “unwound” process;
FE : P — P and fix would have the usual type of a fixed-point operator; (P — P) — P. Using
function application instead of substitution, the rule Rec would become

E(fix E) = F'
fix B F'

This avoids creating infinite objects, but we have a new problem. The type of fix is ill-defined
in Alf (and other implementations of constructive type theory such as Coq and LEGO) because the
first occurrence of P in (P — P) — P occurs negatively and the set of processes Proc(V') would not
be inductively defined in the normal sense. The situation is no better for parameterised processes.
If S is the type of a state then the fix-point operator would have the type

Rec’

fixs: ((S§—=P) = (S§—=P)) = (S—>P)

which is also ill-defined. If we insist on implementing the fix-point construct then the only way out
would be to implement our own process substitution which, though not difficult, does add the usual

complexity of variable capture and renaming and would require proofs of correctness. Implementing
process constants will be easier. We should also explain that types of the form (P — P) — P are
sound in Isabelle [Pau94] and EIf [Pfe91] but they are weaker logics which don’t provide induction.

4 Representation in Alf

Before we proceed with our solution for representing recursion we informally present Alf through
a few examples on the natural numbers (This short discussion of type theory is taken from
[CNSvS95]). We view Alf as the typed lambda calculus extended with dependent types. Alf is
a proof editor and all of the Alf code below appears as it does on the screen. There are two kinds
of terms in Alf — types and objects, which are inductively defined sets and functions, respectively.

Natural Numbers. The type (set) of natural numbers is introduced with the definition N € Set,
0 € N, and s € (N)N. Here the type (N)N is Alf notation for the function type N — N. An object
(i.e., function) Add that adds two natural numbers and a set (or type) Le representing a relation
for < are defined by the following (which is how they actually appear in the Alf proof editor).

Add € (N;N)N Le € (m,n € N)Set
Add(0,y) =y le0 € (n € N)Le(0,n)
Add(s(z),y) = s(Add(z,y)) leS € (m,n € N;Le(m, n))Le(s(m),s(n))

The definition of Le follows the normal relational definition. Notice the use of the dependent
function type. In Le the constructor le0 is a function whose result type Le(0,n) depends on the
object m. This allows us to define Le as would be done in an operational semantics and hints at
how the operational semantics of CCS directly will be specified in Alf. That is, le0 encodes the rule

and leS encodes n < m

0<n succ(n) < succ(m)”

Types as Propositions. A function in Alf can be viewed as a proof of a proposition in first-
order logic where the type of the function represents the proposition to be proved. For example,
the following function is a proof that Le is transitive. In the definition the first three parameters
1,7,k € N have been hidden along with the declarations of m and n in the constructors for Le. This
feature of Alf makes proofs more readable.

LeTrans € (Le(4,7); Le(4, k))Le(7, k)
LeTrans(le0,) = le0
LeTrans(leS(hs), eS(Rh)) = 1eS(z, k, LeTrans(hgy, h))

The type of the function represents the proposition to be proved and the body of the function
represents the proof. The function is recursive, which represents a proof by induction.

4.1 Representing Finite Processes

We are now in a position to present CCS in Alf. We assume a library of predefined types for natural
numbers, lists, and the unit type Nat, List, and Unit.

First, we define a type of processes Proc(V,S) parameterised on two type variables V' and S
which represent the types of channel and state expressions, respectively. That is, we abstract from
the implementation of channel, state, and boolean expressions that were used in the definition of

H Construct name

CCS Syntax Alf Syntax H

Inactive process ¢(0) Nil(V,S)

Input prefixing ¢(ch?z.p) Input(V,S,ch,Az.¢(p))
Conditional if bthen p If(V,S,b,¢(p))

Output prefixing ¢(chle,.p) Output(V,S,ch, e,,¢(p))
Tau prefixing o(7.p) OutTau(V,5,9(p))
Summation o(p+q) Sum(V,S,6(p).o(q))
Parallel Composition | ¢(p|q) Par(V,S,6(p),¢(q))
Restriction® o(p\f) Res(V,S,6(p),0)
Process Constants® Ales) Var(V,5,A(es))
Relabelling® o(pLf]) Rel(V,S,9(p),f")

“Where £ is £ represented as an Alf list.
YWhere A € (F)S and E is the type of es.

“Where f’ is an obvious Alf representation of f.

Table 1: Translation function ¢ maps CCS to Alf type Proc(V,S).

P assuming them to be simply Alf expressions. There is a constructor in Proc for each operator in
CCS. For example, the parallelism constructor Par has type

Par € (V, S € Set; Proc(V, S); Proc(V, S))Proc(V, S5)
The type of the input prefixing constructor is
Input € (V, S € Set; Channel; (V)Proc(V, S))Proc(V, S)

where Channel is a set of channel names isomorphic to the natural numbers. In examples, we
continue to use named channels such as read, write, in, and out and assume they are given
different values in Channel.

Proc is an inductively defined set definable in any typed functional language such as Haskell or
ML. Table 1 describes a function ¢ that shows how a term in the concrete syntax P maps to a term
of type Proc(V,S) where V' and S are the types of channel values and state; ¢ : P — Proc(V, 9).
By an inductive argument it is easy to show that every term in P maps to a term in Proc. However,
the converse is not true. There are processes in Proc not in P. Let the domain of channel values
be the type of channels Channel (i.e., Proc(Channel, S)). Now we can write a process that can pass
channels.

Q € Proc(Channel, Unit)
Q = Input(Channel, Unit, chan, Ay.Output(Channel, Unit, y, y, Nil(Channel, Unit)))

The process Q reads a value into y on channel chan and then writes y on channel y. It is clear that
process Q has no representation in P.

4.2 Parametric Defining Equations

To avoid creating an ill-defined fix construct we could implement our own form of explicit pro-
cess substitution. It is important that this process substitution be able to handle parameterised
processes over infinite state domains (such as the read/write register example above). However,

instead of trying to implement a “fix-point construct with state”, it will be easier to implement
process constants with parameters where each constant has a declaration of the form A(z) def P

Consider first a single defining equation with one parameter. For example, a counter can be
defined by C'(z) def out!z.C'(z 4+ 1). We can represent this functionally. As we are considering a
process definition of only one constant, the name “C” plays no role in the process definition and
can be eliminated. We replace each occurrence of constant C(es) by a new process constructor
Var(es). The process C'(z) above is Az.out!z.Var(z + 1) which we would write in Alf as

‘ C(z) = Output(Nat, Nat, out, z, Var(Nat, Nat, s(z))) ‘

As another example, recall the definition of Reg(z) in equation (4). Since there is only one
defining equation, to represent this in Alf we need to define an Alf object of type (Nat)Proc(Nat, Nat)
where the ports read and write are assigned unique channel names.

Reg € (Nat)Proc(Nat, Nat)
Reg(z) = Sum(Nat, Nat, Input(Nat, Nat, read, Ay.Var(Nat, Nat, y)),
Output(Nat, Nat, write, z, Var(Nat, Nat, z)))

This definition may seem a little verbose because of all the type information that is included.
However, in Alf, most type information is inferred automatically by unification and does not have
to be explicitly entered by the user. Also, we can hide much of the redundant type information.

Multiple sets of defining equations are created by using disjoint unions of states S = S; W .- W
Sn. A process parameterised on several state variables is modelled by letting S; be a product of
component substates S; = S;; X --- x 5;,. For example, consider the following process P that
inputs two integers and outputs their sum (forgetting for the moment that these three equations
can easily be rewritten as one).

P Y in@)Q()
Q(x) = in(y)?Sum(z,y)
Sum(z,y) def out!(z + y).P

To represent this in Alf, define a set State in Alf to have the constructors P € State, Q €
(Nat)State, and Sum € (Nat;Nat)State. The following Alf object represents the above equation
system.

env € (State)Proc(Nat,State)

env(P) = Input(Nat, State, read, Az.Var(Nat, State, Q(z)))

env(Q(z)) = Input(Nat, State, read, A\y.Var(Nat, State, Sum(z, y)))
env(Sum(z,y)) = Output(Nat, State, write, add(z, y), Var(Nat, State, P))

In general, a set of defining equations A;(z) def p; is encoded in an Alf type State and a function
env of type State — Proc(V,State), called an environment, that are defined as follows: 1) State
has constructor A; of type t; for each process constant A; with a parameter of type ¢;, 2) env is
defined by cases: env(A;(z)) = ¢(p;). Under this encoding of defining equations, rule Def of the
operational semantics is replaced by the following rule in our implementation of CCS semantics,

which we soon define in Alf.

a g
Var env(A(v)) — p

Alv) =5 pf

Notice that the function application env(v) takes the place of process substitution.

5 Transition Relation in Alf

The transition relation is represented by a set Step with the following type.

‘Step € (V, S € Set; (S)Proc(V, S); Proc(V, S); Act(V); Proc(V, S))Set‘

where Act(V) is a set of actions with constructors In,Out € (Channel; V)Act(V) and Tau € Act(V).

The constructors for Step are direct translations of the rules of the operational semantics, except

for input prefixing and process constants, which are translations of the rules Iny, and Var.

InPref € (V,S € Set; chan € Channel;v € V; f € (V)Proc(V, 5))
Step(V, S, Input(V, S, chan, f), In(V, chan,v), f(v))

The rule for process constants must be parameterised on an environment.

Pvar € (V,S € Set;a € Act(V);p € Proc(V,S);s € S; env e (S)Proc(V, S);
Step(V, S, env(s), a, p))Step(V, S, Var(V, S, s), a, p)

We show just two more constructors for Step corresponding to the rules ParT and Cond of Figure 1.

ParTau € (V,S € Set;chan € Channel;v € V;p,p',q,q' € Proc(V, S);
Step(V, S, p, Out(V, chan, v), p'); Step(V, S, ¢, In(V, chan, v), ¢))
Step(V, S, Par(V, S, p,q), Tau(V), Par(V, S, p', ¢'))
KT € (V,S € Set;a € Act(V);p,p’ € Proc(V,S);Step(V, S, p,a,p'))
Step(V, S, f(V, S, true, p), a, p')

Notice that since the relation — is not recursive because of input prefixing [Vaa93], Step
could not be defined in a standard functional language (unless we change the semantics to a “late”
operational semantics [HL95]).

We are now in a position to show the soundness of the representation which we will call ade-
quacy. First, we need a theorem that justifies using Alf’s function application for channel variable
substitution. We use the equality sign below to relate Alf terms not distinguishable by Alf. This
equality is defined using the notion of Alf’s canonical forms and boils down to afn-reduction for
closed terms.

Proposition 1 [Substitution Lemma] If p € P, v € Value (v € State) and z is a channel (state)
variable then ¢(p[v/z]) = (Az.¢(p))v.

Proof First note that substitution on channel and state expressions (which are just Alf expressions)
is defined by e[v/z] = (Az.e)v. Then, the proposition follows by induction on the structure of p.
For example, for the output prefix we have

(Az.p(chle.p))v = (Az.Output(ch, e, ¢(p))v = Output(ch, (Az.e)v, (Az.¢(p))v)

By induction hypothesis and the assumed representation of substitution on expressions, the latter
term can be rewritten as Output(ch, e[v/z], p(p[v/z])), which equals ¢((chle.p)[v/z]). O

Let us extend the translating function ¢ to actions: ¢(ch!v) = Out(ch,v), ¢(ch?v) = In(ch,v),
¢(r) = Tau.

Proposition 2 [Adequacy]| Given a set of defining equations and our encoding of them in an
environment p

(a) for every closed p,q € P ifp =5 ¢ then Step(V, S, p, ¢(p), ¢(a), o(q))

(b) for every closed p € P, ¢’ € Proc(V, S), o/ € Act(V) if Step(V,S,p,d(p),a’,q') then p == ¢
for some a, ¢ such that ¢(a) = o’ and ¢(q) = ¢

Proof (a) We proceed by induction on the derivation of p =+ q. We examine here a few cases,
the inductive argument is straightforward for the remaining ones. To simplify the notation we will
omit the obvious parameters V, .S and p.

If eh?z.p eh?y plv/z] then we have to construct Step(Input(ch, Az.¢(p)),In(ch,v), ¢(plv/z])).
By definition of Step we have Step(Input(ch, Az.¢(p)),In(ch,v), (Az.¢(p))v) and the argument is

completed by Proposition 1.

If A(v) = p’ for some process constant defined by equation A(z) def p then, by induction

hypothesis, we have

Step(6(p[v/2]), (@), ¢(p'))- (5)

We have to construct Step(Var(A(v)), ¢(a), ¢(p')). According to our encoding of defining equations
for processes A(v) is a (closed) expression of type S (states) and p(A(v)) = (Az.¢(p))v. Using
Proposition 1 we get p(A(v)) = ¢(p[v/z]). By (5) we have Step(p(A(v)), ¢(a), ¢(p')), which allows
us to construct Step(Var(A(v)), ¢(a), ¢(p')) as required.

If (if true then p) -+ p then, by induction hypothesis, we have Step(¢(p), (), #(p))) and
constructing the required Step(If(true, ¢(p)), ¢(), ¢(p')) is straightforward from definition of Step.

(b) We proceed by induction on the derivation of Step(p’, @, ¢'), where p’ = ¢(p) for some closed
p € P. The base cases are input, output and 7 prefixes. For example, consider the case of the input
prefix, i.e. Step(Input(ch, Az.4(p)), In(ch, v), (Az.¢(p))v), where Input(ch, \z.¢(p)) = ¢(ch?z.p).
But ch?z.p ch?y plv/z] and ¢(p[v/z]) = (Az.¢(p))v by Proposition 1 .

For the inductive step, let us again examine just two example cases. Assume Step(Var(A(v)), o/, ¢’),

where Var(A(v)) = ¢(A(v)) for some process constant defined by equation A(z) . According to

definition of Step we must have had Step(p(A(v)),a’,¢'). Just as in (a) above p(A(v)) = ¢(p[v/z]),
so we can use the induction hypothesis to obtain p[v/z] — ¢ for some « and ¢ such that ¢(a) = o
and ¢(q) = ¢'. Now, we can derive A(v) —+ ¢ as required.

Assume Step(If(b, ¢(p)), o/, ¢'), where If(b,(p)) = ¢(if b then p). Then we must have had
b = true and Step(¢(p), o, ¢'). By induction hypothesis, p —+ ¢ for some a and ¢ such that
#(a) = o' and ¢(q) = ¢/, hence (if b then p) =+ ¢. O

Notice that the proposition avoids the problem of terms that are in Proc but not in P by
insisting that all terms in Proc be translated by ¢.

6 Some Machine Checked Proofs

We can, in Alf, define the notion of a bisimulation and do proofs about bisimulation. Similarly, we
can define a logic such as the modal p-calculus and the satisfaction relation between terms in the
logic and processes. As we mentioned in the introduction, we have been experimenting with this.
However, without defining our own equivalences it is interesting to examine the kind of proofs can
be done in Alf directly.

10

Transition Proofs. We can do some simple proofs about the transitions a process may have.
That is, we can show that certain items are in the Step relation. For example, in the register
example it should be true that for any z and y, Reg(z) can input y and evolve to Var(y). That is,
we should be able to build an object with the Alf type:

proof € (n, m € Nat) Step(Nat, Nat, Reg(n), In(Nat, read, m), Var(Nat, Nat, m)) (6)

which is easily provable in Alf.

Id Proofs. [t is easy to define in Alf a relation Id, where Id € (A € Set; A; A), that relates objects
indistinguishable by Alf (equivalent up to Alf’s afn-reduction, in the case of closed terms). The
relation Id plays an important role in reasoning about data in our processes. For example, we would
like CCS processes to be equivalent up to renaming of data variables and indeed Id provides this.
For example, in?zout!(z).0 and in?y.out!y.0 are in Id. In fact, the following congruence holds.

Proposition 3 [Ild Congruence] Id is a congruence with respect to all of the operators of CCS.

This congruence gives us the capability to use off-the-shelf theorems about Alf types (e.g.,
natural numbers, lists, etc.) to reason about data within our processes. For example, for any z and
y the process out!(z + y).p should be equal, in any reasonable behavioural process equivalence, to
the term out!(y+ z).p by using a lemma about the commutativity of +. In Alf it is straightforward
to show these terms are in Id. This leads us to the next result that if two processes are identical
(that is, in Id) then they are strongly bisimilar.

Proposition 4 [ld preserves bisimulation] For all p, ¢ € Proc if Id(p, ¢) then p ~ q.

Equational Reasoning. It is straightforward to define an equality relation by encoding the
algebraic laws of CCS. To do this we define a set Equals of the type

Equals € (V, S € Set; Proc(V, S); Proc(V, S))Set

where each algebraic law of CCS is encoded as a constructor in Equals. For example, the law for
commutativity of + is encoded as

pluscomm € (V.S € Set; p, q € Proc(V, S))Equals(V, S, Sum(p, q),Sum(q,p))‘

Alf’s type inferencing and unification provide a substantial amount of assistance when doing equa-
tional proofs.

Induction Proofs. Alf’s ability to allow the user to do proofs by induction is an important source
of Alf’s power. In Alf, every inductively defined set comes equipped with an induction principle
generated by Alf. For example, the two inductively defined sets described so far are Proc and Step.
Induction over Proc amounts to structural induction over the syntax of processes and induction over
Step is induction over the structure of the derivation (or what Milner calls “transition induction”
[Mil89, page 58 section 2.1]). As an example of induction over the structure of a derivation consider
the set Sort which describes the syntactic sort of a process (the set of channel names that appear
in a process’ syntax). The type of Sort is

‘Sort € (V,S € Set; env e (S)Proc(V, S); Proc(V, S); List(ChanneI))Set‘

11

and the introduction rules for Sort are straightforward to implement. We can prove a theorem
about sorts [Mil89, proposition 2.1 page 58] that says that if p — p’ and (a # 7) then « € Sort(p).
The corresponding statement in Alf is

SortLemma € (V, S € Set;a € Act(V); env e (S)Proc(V, S);p,p’ € Proc(V, S);
sp € List(Channel); nottau € (Id(a, Tau))Empty; Sort(p, sp); Step(env, p, a, p'))
InList(GetChan(a, nottau), sp)

InList(z,/) is a predicate read # € [and Empty is the null set which corresponds to false so
(Id(a, Tau))Empty means a # 7. GetChan is a function that returns the channel name of an
action but can only do so when it knows that the action is not 7 (all Alf functions must be total).
Some of the type parameters in the arguments to SortLemma have been hidden for readability.
SortLemma is a function whose type represents the proposition and whose body represents a proof.
When constructing the proof (function) Alf allows the user to do pattern matching on any argument
and choosing the argument corresponding to the proof for Step(enuv, p, a,p’) Alf generates a proof
obligation for each of the constructors in Step.

Hennessy-Milner Logic. As a more interesting example, we have encoded the syntax and sat-
isfaction relation of Hennessy-Milner logic [Sti93] and do some proofs about value passing processes
by induction (proofs that elude finite model checkers for two reasons, 1) infinite value domains
and 2) infinite state due to recursion and parallelism in the process). For example, consider the
following counter in CCS (slipping back into normal CCS syntax)

Count(0) def up. Count(1)

Count(i + 1) def up. Count(i + 2) + down. Count(t)

Using induction on n we can show that Vi.Count(i) = [up|”(down)”true (this proof has been
carried out in Alf). We have not yet extended HML with the recursive operators y and v as we

™ and induction on n.

can frequently use the defined operators [up]” and (up)

Alf provides us with many data types to do induction on and indeed some data types that we
normally would not consider. For example, since the sort of a process is defined as an inductively
defined set Sort we can now do induction on the sort of a process. In the next section we will
encounter another inductively defined set Guarded which describes the set of guarded processes.
This will allow us to use induction over the “proof of guardedness” of a process (or more intuitively,

induction over the syntax of a guarded process).

7 A CCS Interpreter

The relation Step described in the previous section is defined for all process in Proc, even unguarded
processes. Consequently Step is potentially infinitely branching on a process p if p is unguarded.
On infinite value domains, Step is also infinitely branching because of the rule for input prefixing
(as discussed in section 2). Because of these two problems Step is not effective.

The question arises, under what circumstances can we write a function Step; that, given a
process, returns a finite set (list) of the transitions of the process. If we use the “late” operational
semantics we avoid the problem caused by input prefixing. And if we only allow Step; to operate
on guarded processes we avoid the problem of unguarded recursion. But to do this we must either
have a syntax of guarded processes (which is difficult to write) or Step, must also take a proof that
the process is guarded. The problem is that if p is unguarded then Steps(p) will not terminate

12

and the list of possible transitions may be infinite. Remember, however, that we can only write
terminating function in Alf.

To see this, in Alf Stepy would be a function from a process and an environment to a list of
transitions

Step; € (V, S € Set; Proc(V, S); (S)Proc(V, S))List(Transition(V'))
Here, a transition is either an input, output, or 7 transition and the set Transition is introduced in
Alf by
Transition € (V, S € Set)Set
In; € (V, S € Set; Channel; (V)Proc(V, S))Transition(V, S)
Out; € (V € Set; Channel; V'; Proc(V, S)) Transition(V, S)
Tau; € (V, S € Set; Proc(V, S))Transition(V, S)

In; is essentially a pair; a channel and a function that evaluates to the derivative process when
the input value is known. Out; is a triple; a channel, value, and the derivative process. Tau; is a
singleton, just the derivative process.

Normally, Step; would be defined recursively on the structure of the process. The problem
arises when we try to determine the transitions of a process constant. The definition of Step; on
process constants would be

Step ;(Var(s)) = Step ;(enu(s))

However, Alf rejects this as Stepy is called recursively on an argument that is not structurally smaller
and implying that Stepy is potentially non-terminating. We must, then, find another parameter
which we can use to structure the recursive calls.

Guardedness. The list of transitions of a process p is guaranteed to be finite (assuming a “late”
semantics) if p is guarded. This suggests that if we pass Steps only guarded processes then Stepy is
guaranteed to terminate. But this is not quite enough. We also need to pass Step; a proof that the
process is guarded. Stepy is then defined, not on the structure of a process, but on the structure
of the proof of guardedness.

It is straightforward to define the set of guarded processes in an environment.

Guarded € (V, S € Set; (5)Proc(V, S); Proc(V, S))Set
Now we define Steps so that it takes a proof of guardedness.
Step; € (V, S € Set;p € Proc(V,S); env e (S)Proc(V, S); Guarded(V, S, env, p))List(Transition(V'))

Steps is now dependently typed on both p and env. Now when we attempt to determine the
transitions of a process we have the the following definition for evaluating process constants

Step(Var(s), Var,(h)) = Step;(enuv(s), h)

where Var, is the introduction rule which specifies that a process constant is guarded if the process
that it is naming is guarded and h is a proof of this guardedness. The recursion in function Step
is now well-founded and this guarantees that Step; always terminates.

We can prove the correctness of Step; in relation to the definition of Step. For brevity we

mention here just one associated lemma: if Step(V,S,p,Out, (ch,v),p’) (i.e. p chty p’ in CCS
notation) then the list returned by Step; contains the transition Out;(ch, v, p’). We prove this in
Alf by induction on the transition.

13

8 Related Work

There have been several implementations of process algebras in type theory but as far as we
know this is the first that addresses value-passing CCS with parametric recursion in such a way
that we borrow data domains from the type theory itself in a sound manner. [CP88] implements
pure (i.e., without value-passing or parametric recursion) CCS in Nuprl using the denotational
model of non-well-founded set theory. [Sel93] describes the implementation of pCRL in Coq.
pCRL is algebraic and is related to ACP. The approach differs in that we represent semantics
operationally (as an inductively defined set and can therefore do induction over the relation) and
pCRL is defined axiomatically. [Gim95] describes an implementation of CBS in Coq but does not
implement recursion explicitly. Instead, Coq is extended with co-inductive types that allow one to
express processes as infinite objects.

9 Conclusions

We have described an implementation of CCS in Alf, an implementation of type theory. The
version of CCS we studied was value-passing and allowed recursive defining equation which could
carry parameters. The language of channel expressions and state expressions was borrowed from
Alf in a sound manner consequently allowing the possible types of the channel values and process
parameter to be any Alf data type including infinite data domains. Channel expression and process
recursion usually require some form of substitution. However, this too was borrowed from Alf
thus simplifying the representation as we no longer need to implement substitution (and alpha
conversion) nor proofs of correctness. Also, borrowing data types from the framework allows us to
use off-the-shelf theorems.

Constraining the types of value and states. As we mentioned, the type Proc(V,S) contains
more processes than can be translated from concrete syntax P using ¢. The extra processes
in Proc(V,S) are formed by instantiating either V' or S to Channel, or to the type of processes
themselves (i.e., Proc(Proc(V, S%), S)). This situation occurs because V' and S are very general and
can be instantiated to any Alf type. However, it is straightforward to define a general type Value
which disallows problem types above and includes all the combinations of the types of lists, tuples,
disjoint unions, and base types. Given the following definition of a channel or state value,

Value € Set
list € (List(Value))Value
tuple € (Prod(Value, Value))Value
disjSum € (Plus(Value, Value))Value
nat € (Nat)Value
bool € (Bool)Value

all of the problems disappear if we instantiate V and S to Value so that we have Proc(Value, Value).
Also, nothing has changed in the definition of Step and we still identify Alf variables with channel
and state variables and use Alf substitution for channel variable and process substitution.

References

[CNSvS95] Thierry Coquand, Bengt Nordstrom, Jan Smith, and Bjérn von Sydow. Type the-

14

[Coq93]

[CPSS]

[CY94]

[DFHO5]

[EPSS]

[Gim95]

[HL95]

[Mil89]

[Pau94]

[Pet94]

[Pfe91]

[Pra93]

[Prag4]

[Pradx]

[Sel93]

ory and programming. Extended Abstracts in Theoretical Computer Science bulletin
number 52, February 1995. Also available Chalmers University of Technology technical
report 81.

Thierry Coquand. Infinite objects in type theory. In Proceedings of the 1993 TYPES
Workshop, number 806 in Lecture Notes in Computer Science. Springer-Verlag, 1993.

Rance Cleaveland and Prakash Panangaden. Type theory and concurrency. Interna-
tional Journal of Parallel Programming, 17(2):153-206, 1988.

Rance Cleaveland and Daniel Yankelevich. An operational framework for value-passing
processes. In POPL’94, Proceedings of the 21%' annual symposium on principles of
programming languages, 1994.

Jéelle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract syntax
in Coq. In TLCA 95 Typed Lambda Calculus and Applications, number 902 in Lecture
Notes in Computer Science. Springer Verlag, 1995.

C. Elliot and F. Pfenning. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN’88 International Conference on Programming Language Desighn and Imple-
mentation, Atlanta Georgia, June 1988. ACM, ACM Press.

Eduardo Giménez. Implementation of co-inductive types in Coq: An experiment with
the Alternating Bit Prototcol. Technical report, INRIA Lyon, ”June” 1995. Available
at ftp.lip.ens-lyon.fr/pub/Rapports/RR/RRI5.

Mathew Hennessy and Hu Min Lin. Symbolic bisimulations. Theoretical Computer
Science, 1995.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Lawrence Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994. LNCS
828.

Jenny Petersson. Tools for a calculus of broadcasting systems. Licentiate thesis, De-
partment of Computer Science, Chalmers University of Technology, 1994.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

K. V. S. Prasad. Programming with broadcasts. In CONCUR, August 1993. Springer
Verlag LNCS 715.

K. V. S. Prasad. Broadcasting with priority. In ESOP, April 1994. Springer Verlag
LNCS 788.

K.V.S. Prasad. A calculus of broadcasting systems. The Science of Computer Pro-
gramming, 199x. To apprear.

M.P.A. Sellink. Verifying process algebra proofs in type theory. Technical Re-
port 87, Deptartment of Philosohy, Utrecht University, ”March” 1993. Available at
http://www.phil.ruu.nl/home/marco/preprints.html.

15

[Sti93]

[Vaa93]

Colin Stirling. Modal and temporal logics. In Samson Abramsky, Don Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 478-563. Ox-
ford: Clarendon Press, 1993.

Frits Vaandrager. Expressiveness results for process algebras. Technical Report CS-
9301, CWI, University of Amsterdam, Programming Research Group, Amsterdam,
The Netherlands, 1993. Appeared in Proceedings of the REX Workshop: “Semantics:
Foundations and Applications”. LNCS, Springer-Verlag.

16

