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Supercomputers are capable of providing tremendous compu-
tational power, but must be carefully programmed to take advan-
tage of that power. There are several different architectures used
in supercomputers, with differing computational models. These
different models present a variety of resource allocation problems
that must be solved.

The computational needs of a program must be cast in terms of
the computational model supported by the supercomputer, and
this must be done in a way that makes effective use of the
machine’s resources. This is the resource allocation problem. The
computational models of available supercomputers and the asso-
ciated resource allocation techniques are surveyed. It is shown that
many problems and solutions appear repeatedly in very different
computing environments.

. INTRODUCTION

Effective use of supercomputers naturally requires that
generated code be structured to take advantage of the capa-
bilities of the target supercomputer. The first step in pro-
gramming any computer is choosing an appropriate
algorithm, and this step is especially important for super-
computers. For many problems there exist several different
approachestothe solution, with differing degrees and kinds
of parallel or vector operations. Once an algorithm is cho-
sen, it must be implemented in such a way as to make effi-
cientuse of the parallel or vector capabilities of the machine.
Successful implementation requires a thorough under-
standing of the computational model(s) embodied in the
design of the machine and of the best techniques for
exploiting said model(s).

Discussions of supercomputer programming quickly
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comearoundtotheissue of programminglanguage. Onthe
one hand, parallelizing compilers for older, sequential lan-
guages would allow us to avoid retraining armies of pro-
grammers and recoding stacks of programs. On the other
hand, new, inherently parallel languages would free us from
the shackles of old-fashioned, sequential thought patterns.
Currently available parallel computers are often supplied
with neither—programs are written in a sequential lan-
guage augmented with constructs for explicitly creating and
manipulating parallelism.

Since discussions of parallel and vector computing are
immediately factionalized by programming language style,
an important similarity is often obscured: in parallel pro-
gram implementation, eventually it must be decided how
best to match the parallel components of the program with
the parallel capabilities of the computer. In a vectorizing
or parallelizing compiler for, say, Fortran, the compiler must
analyze the program to discover which parts of it can be
efficiently executed in parallel or with vector instructions
[1], [2]. A translator for a modern ““data flow"” or other “’par-
allel”” language will find that parallelism is readily apparent
in the program, but must still determine the best way to use
that parallelism on a given computer. A programmer using
explicit parallel constructs must, of course, do all of this
work by hand.

We assert that the problem of implementing programs
for parallel or vector execution can be logically viewed in
two phases: first the program is analyzed to discover oper-
ations that could be done in parallel, then these operations
are compared to the characteristics of the target machine
to determine which ones should be done in parallel (or with
vector instructions) [3]. A given language may make the first
phase difficult or trivial, but discussions of ways of exploit-
ing parallelism, whether by hand or by compiler, should be
decoupled from arguments over the best way to write par-
allel programs.

In this paper we will be concerned with these “’second
phase’” issues of exploiting parallelism. First we will review
the common styles of supercomputer architecture and their
computational models. Then we will discuss strategies for
allocating supercomputer resources, both statically and
dynamically. Finally, we present a few case studies, show-
ing concrete computational models and the allocation strat-
egies employed.
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[I. COMPUTATIONAL MODELS

A supercomputer is essentially any machine that is near
the top end of performance, regardless of how it is con-
structed [4]. In fact, however, all supercomputers achieve
their high performance by using high-speed components
~and by performing multiple operations simultaneously. It
is this overlapped execution that throws a curve into super-
computer programming. The same architectural features
and programming problems can also be found in less
expensive systems that don’t provide supercomputer per-
formance. Since we are concerned with computational
models and ways of allocating resources to get the best per-
formance from a given machine, we will not try to distin-
guish between ““true’” supercomputers and ““mini-supers’’
or just plain parallel computers.

Parallel computers are commonly divided according to
Flynn’s classifications [5] into SIMD (Single Instruction Mul-
tiple Data) and MIMD (Multiple Instruction Multiple Data).
This division is useful but not ideal; there are supercom-
puters that are difficult to classify, and important distinc-
tions that are not made. Vector processors can be grouped
with SIMD machines for purposes of discussion, although
in fact they depend on another form of parallelism, pipe-
lining, for their high performance. Newer machines such
as the Alliant and the Cray X-MP provide multiple proces-
sors, each with vector capability, which we can call MSIMD.
A diagram of Flynn’s taxonomy and representative com-
puters is shown in Fig. 1. The subdivisions in this taxonomy
are explained in Section [I-B.

Flynn’s classification does not distinguish other char-
acteristics that are important to the computational model,
such as the likely granularity of parallel computation or the
method of synchronization. A chart showing the grouping
of supercomputers according to these characteristics is
shown in Fig. 2.

A. Program Dependencies

The basis of parallel programming is the understanding
of dependencies within a program. A dependency exists
between two operations in a program whenever the logic
of the program dictates that the operations must be per-
formed in a particular order. The most important example
is data dependence: one operation computes a value that
is subsequently used by another operation. Clearly, the sec-
ond operation must wait for the first to finish, in order to
obtain the needed data. Other forms of dependence involve
ensuring thatupdated values of a variable are written in the
correct order, and determining the results of a conditional
test, to see whether a particular piecé of code will be exe-
cuted. If there is no dependence between two operations,
then they can be performed in any order, including simul-
taneously.

Analysis of such dependencies is a standard part of com-
pilertechnology[6]. This analysis has been extended to array
references within a loop to determine the possible vector
or parallel execution of aloop[1],and to determine possible
MIMD parallel execution of operations in or out of a loop
[71-[9].

The synchronization imposed by data dependencies is
the basis of the dataflow model of parallel computation [10].
Other forms of dependency are usually viewed as being
artificial impediments to parallel execution. Functional [11]
and single-assignment [12], [13] programming languages
attempt to improve parallelism by preventing unnecessary
dependencies. Non-dataflow dependencies can also be
automatically removed by a compiler by ““renaming’’ [14].
Renaming is an allocation technique: the needs of the
source program—variables in this case—are mapped to
hardware resources—storage locations—in a way that
reduces the number of dependencies, thus improving the
performance.
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Fig. 1. Taxonomy of supercomputer architectures.
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Fig. 2. Computational models.
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Grain size | Processor | Computational model | Flynn’s [ Example machines
synchronization ) ) Classification
data flow Data flow model — Sigma-1
Hitachi $X-200, -
Fine interleaving Pipeline model SIMD Cray-1, CDC Cyber 205,
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models o : "| Burroughs BSP, ICP-DAP, |
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Connection Machine
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models | asynchronous | Message passing model | MIMD | Tntel iPSC, Transputer |
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B. Parallel Processing Architectures

1) Pipelining and Vector Processing: The basis of pipelin-
ing is to take an operation and divide it into several stages,
one feeding into the next. Throughput is improved since
we are able to perform many subtasks simultaneously, at
different stages of the pipe. A factory assembly line is a
familiar example, with each station on the line containing
a product at some stage of completion, and all workers per-
forming their tasks simultaneously. Pipelining is effective
only when the pipe is kept nearly full, with new operands
being fed in as fast as the pipe can accept them. If gaps
appear, then fewer operations will be done in parallel, and
overall performance suffers. Vector operations provide an
excellent way to keep a computational pipeline full.

A vector instruction applies the same operation to all ele-
ments of a vector (or more likely, to corresponding ele-
ments of a pair of vectors). Some setup time may be required
to configure the pipe to perform the particular operation,
but then the operands can be fed into the pipe as fast as
memory can deliver them. There is no need to pause to fetch
a new instruction nor to ponder a conditional branch.

The primary model of computation on a vector machine,
then, isasimple operation,oracombination of afew simple
operations, being performed repeatedly over a block of
data. Such operations are characterized in source code as
small, tight loops.

Pipelining as a feature of computer architecture is in
widespread use, not limited to vector processors, and is
usually transparent to the computer programmer. Indeed,
on vector machines the normal programmer’s model is that
of vector operations and loops as described above, not of
pipelines. Pipelining, however, is also useful as a model of
parallel computation at a higher level. A programmer may
explicitly divide a task into several stages, ranging in size
from a few instructions to many subroutines, feeding each
other and executing concurrently. This is one of the typical
models of computation on MIMD machines. Systolic arrays
[15] and wavefront processing [16] can be thought of as two-
dimensional pipelines.

2) SIMD Machines: The SIMD machine consists of many
identical processing elements, each with its own data mem-
ory, but all executing exactly the same program. Obviously,
such a machine can achieve very high performance by
incorporating a large number of processors, but only if the
task is such that all the processors do the same thing. The
model of computation on an SIMD computer is very much
like that of a vector processor: a single operation is per-
formed over a large block of data.

Unlike the constrained pipeline operation of the vector
processor, the array processor (an equivalent name for most
SIMD machines) can be much more flexible. The process-
ing elements are general programmable computers, so the
task performed in parallel can be quite complex and can
include conditionals. The usual manifestation of this com-
putational model in source code is about the same as the
vector operations: loops ranging over the elements of
arrays, where the values produced in one iteration of the
loop are not needed for use in another iteration.

Since the models of computation on vector and array pro-
cessors are so similar, the two are frequently discussed as
if they were equivalent. For many purposes, a vector pro-
cessor can be treated as an SIMD machine. The true parallel
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nature of an array processor makes it more flexible and gives
the promise of greater performance. On the other hand, the
more sequential operation of a vector pipeline allows data
results to be fed back into the computation. Thus, vector
instructions can often be used to compute recurrences,
which are more problematic on array processors.

3) MIMD Machines: The term multiprocessor covers most
of the machines in the MIMD classification, and is fre-
quently used as a synonym for MIMD, as array processor

is for SIMD. In a multiprocessor system, each processing

element (PE) executes its own program, relatively indepen-
dently of the other elements. PEs must, of course, be con-
nected in some way, and this leads to a subdivision of the
MIMD classification. In a shared memory, or tightly-cou-
pled, multiprocessor, there is a bank of data memory acces-
sible to all PEs. Acommon bus oracommunication network
connects the processing elements to the shared memory.
In contrast, a loosely-coupled or private memory machine
divides all storage among the PEs, and each block of storage
is directly accessible only to its associated processor. A
communication network connects the PEs to each other.

The basic model of computation on an MIMD multipro-
cessor is of independent processes occasionally sharing
data [17]. There is a great range of variation within this
model. Atone end of the spectrum there is distributed com-
puting, in which a program is divided into fairly large par-
allel tasks, consisting of many subroutines. Atthe other end
is the dataflow model, in which each operation in the pro-
gram can be thoughtof as a separate process. The operation
waits forits input data, the operands, to be sentto it by other
processes. When all the incoming data is available, the
operation is performed and the resulting value is sent to
those processes that need it. Large- and medium-grain data-
flow models [7], [18]-[20] take processes consisting of many
operations and execute them in dataflow fashion.

4) Multiple SIMD Machines: Many newer supercompu-
ters offer multiple processors, each of which possesses vec-
tor or SIMD parallel execution capabilties. We classify such
machines MSIMD.

Compilers for MSIMD machines typically provide lan-
guage-level constructs that allow the programmer to spec-
ify coarse-gain parallelism. Within each task, the compiler
then automatically vectorizes suitable loops [21], [22].
MSIMD machines can be seen as a way of getting the best
of both worlds: fine-grain vector operation for those parts
of program that need it, and flexible MIMD operation for
other parts of the program.

5) Same-Program Multiple-Data: There is another popu-
lar model of parallel computing that does not fit into the
usual view of Flynn’s classification scheme. In the same-
program multiple data(SPMD) model, every processing ele-
ment executes the same program on a different portion of
the data. This model, also called data-parallel computation,
is attractive because massive parallelism is most easily
obtained by the partitioning of operations over a massive

~dataset. Yetthe SPMD mode is not as restrictive as the lock-

step instruction synchronization of the array processor. In
SPMD, the same high-level computation is performed on
each piece of data, but the same low-level machine instruc-
tions may not be. Processing elements may take conditional
branches independently of each other.

SPMD execution s, in fact,an asynchronous SIMD mode.
Ironically, however, of the current hardware SPMD is most
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appropriate for machines usually considered to be MIMD.
Those machines can allow the necessary independent oper-
ation of the processing elements.

In theoretical computer science, the most popular model
of parallel computing is the parallel random access machine
(PRAM). In theory, a PRAM is a shared memory synchro-
nous computer whose processor pool grows with the size
of the input; interprocessor communication latencies are
considered to be zero. These assumptions are not realized
in hardware, of course. However, mapping a PRAM algo-
rithm to a real shared memory machine is straightforward
[23], [24]. If the real machine doesn’t contain enough pro-
cessors then a resource allocator must partition the data
into larger grains to be processed by the processors. Ran-
ade [25] has shown how PRAM algorithms can be trans-
formed to run on a butterfly network with only an O(log n)
slowdown. The mapped PRAM algorithm then executes in
SPMD fashion on the MIMD machine.

C. Communication Models

One of the distinguishing features of a multiple-proces-
sor computer system is the communication network [26]
that connects processors to other processors or to memory.
The communication model for a multiprocessor system is
so important that many performance measures and tuning
factors are represented by the ratio of processing times to
communication times of tasks [27]. There are two basic
models for interprocessor communication: message pass-
ing and memory sharing. In a shared-memory multipro-
cessor, one processor writes to a particular memory loca-
tion and another processor reads that memory location. To
ensure data coherence and process synchronization, com-
munication is often implemented by mutually exclusive
accesses to mailboxes in shared memory.

In private-memory architectures, direct sharing is impos-
sible. Instead, processors share data by sending messages
over the interconnection network. The effectiveness of a
communication scheme depends on communication pro-
tocols, underlying interconnection networks, and band-
widths of memory and communication links.

Often, and unwisely, in shared-memory and vector
machines communication costs are overlooked, since com-
munication problems are largely transparent to the pro-
grammer. Communication overhead does exist on these
machines, in the form of bus, memory, and processor con-
tention. As more processors are added to the system, more
processes vie for the same data and bus, leading to satu-
ration. The model of shared memory is very convenient for
programming, and is sometimes provided as the high-level
view of communication on a machine, even though the
underlying system is in fact implemented with private
memory and message passing. Cm* [28] is a well-known
example. Obviously, the communication cost in such a
machine is not zero, although it may not be evident to the
average programmer. We have labelled such machines
“medium-coupled” inFig.1,toemphasize thatthe machine
encourages the programmer to use tightly-coupled as the
high-level model, even though the low-level model is some-
thing else. |

In circuit- and packet-switched networks, as communi-
cation requirements increase we must worry about net-
work saturation. Here interprocessor communication ties
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up network resources: links, processors, message buffers.
The amount of communication can be reduced by careful
functional decomposition of the problem, and careful
scheduling of the resulting functions.

I1l. RESOURCE ALLOCATION

Resource allocation involves assigning system resources
to program components. The reverse view is equally valid:
assigning program elements to system resources. For exam-
ple, processor allocation and task allocation address the
same issue from different viewpoints. Allocation strategies
can be implemented by the compiler, operating system, or
programmer. In literature dealing with these issues, the
terms “scheduling’ and ““allocation’” are often used inter-
changeably. |

The system resources usually considered for allocation
in supercomputing include pipelines, functional units, reg-
isters, processors, and primary memories. Communication
devices and links, I/O devices, and various secondary data
stores can be considered as auxiliary resources in allocation
strategies for supercomputing. Program components con-
sidered include instructions, loops, data arrays, and tasks.
Resource allocation techniques handle two aspects of con-
current execution of a program: correctness and perfor-
mance. Data coherence, process synchronization, and
deadlock avoidance are common issues of correct execu-
tion of concurrent or parallel programs. Any resource allo-
cation technique should satisfy these basic constraints.
Most research on resource allocation emphasizes pipeline
scheduling, vector register utilization, memory allocation,
loop scheduling, task partitioning, and task scheduling to
get the best performance.

We will now examine the common allocation problems
and their solutions for SIMD and MIMD machines. In SIMD
machines, parallelism is found in looping constructs, and
one of the primary problems is arranging the loop code so
that it matches the capabilities of the hardware. A loop may
be unsuitable if dependencies prevent parallel execution,
if the pattern of memory references causes a bottleneck,
or if conditional constructs require more flexibility than a
synchronized SIMD machine can provide. Often the code
can be transformed into a pattern that is better suited to
SIMD execution.

Despite that great difference in target machine architec-
ture, resource allocation for MIMD machines runs into
many of the same problems. Loops are still a primary source
of parallelism, and patterns of memory reference may be
a bottleneck.

A. SIMD Allocation Strategies

1) Machine-Dependent Resource Utilization

a) Array processors: The most distinctive feature of the
array processor is the synchronous operation of its
resources, such as the processing elements, concurrent
memory reference, and inter-PE communication network.
All PEs operate in parallel in a lock-step fashion, synchro-
nized by a global control unit (CU) that distributes instruc-
tions to all PEs. Most array processors are used as attached
processors that are assigned to perform several compute-
bound processes. Best performance, of course, is obtained
when the program is structured to keep all processors busy.
As the processors are highly synchronized, the idle pro-
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cessors cannot be reassigned to some other task. Inter-PE
communication is also performed synchronously under the
control of the CU. Communication-bound processes are
not suitable for these types of processors, because all pro-
cessors must perform communication or beidle atthe same
time (even if some of them do not actually need commu-
nication) [29].

As PEs are synchronized, they all fetch data memory
simultaneously. If processors attempt to access a shared
memory unit, the resulting contention may reduce per-
formance. The ideal case is realizable only if the individual
dataelements are appropriately distributed. That is, the data
should reside in private memories attached to be corre-
sponding PEs, or be distributed across modules of a shared
memory bank.

If the distribution of data is not a good match for the
memory access pattern of the code, then execution will be
slowed by memory contention or message passing. Because
memory access on a processor is much faster than inter-PE
communication, finding a data-mapping scheme that en-
ables concurrent memory reference is crucial for fast com-
putation. For example, if a two-dimensional matrix is par-
titioned by rows and each row is allocated to one processor
(or one memory module), then column-wise element ref-
erences can be performed fully in parallel while row ele-
ment references cannot. A matrix manipulation in which
both rows and columns are frequently referenced cannot
be executed efficiently.

Such a case is found in a matrix computation, A < B X
C,whereA, B,and Care two-dimensional arrays. Fig. 3 shows
the distribution of parallel computations on n processing
elements. If we partition the arrays B and C row-or column-
wise, then to access the elements of B and C would require
repeated, expensive inter-PE communication. This com-

munication could be eliminated by storing the entire arrays
B and C in all processors before computation.

Skewing’ an array is a similar technique to provide more
chance of array accesses without communication during
the computation. In a ““skewed storage’’ scheme, columns
or rows are cyclically shifted across the memory modules
so that both column and row elements can be simulta-
neously referenced [30].

A fine-grain approach to SIMD computation is found in
systolic array implementation. The idea behind the systolic
array is to construct an application-oriented processor in
which every processing element takes part in a few oper-
ations and passes the result to neighbors for successive
operations. Systolic arrays, therefore, perform multidi-
mensional pipelining operations, in which processing ele-
ments do not (always) perform the same operation. In some
sense, resource allocation for systolic arrays is much closer
to the allocation of vector processors that is described in
the next section.

b) Vector processors: A pipeline requires an initial
start-up time, or latency, which depends on the number of
stages in the pipeline. After this lag, the functional units can
turn out one result per clock period as long as a new pair
of operands is supplied to the first stage every clock period.
Thus, the steady-state performance is independent of the
length of the pipeline, and depends only on the rate atwhich
operands are fed into the pipeline. As a result, effectiveness
of the pipeline is mostly determined by the number of iden-
tical operations and the number of operands to be fed,
which are defined by the patterns of the user’s applications.

Recent large-scale vector processors consist of a large
number of arithmetic units, in which the individual units
are highly pipelined [31], [32]. Multiple functional units can
be cascaded to perform longer vector operations, forming

PE,

Q1 = Q15 T bl,l X Cin

Ain = Q1 n + 61,2 X Can

Qin = A1 + bl,n X Cnn

Qap =G + b2y X €10

Ay i= Qo + o X Con

Qyn = Q2 4+ bZ.n X Cnyn

Gpn i= Gnp + bny1 X €10

Gnn '= @nn+ bn2 X c25

PE, PE,
/-
1=1 a1y =a3 + biy X €1 a12:=a12+ b1y X ey
41 =2 |®a =61 F 51,2 X €21 12 ‘= a2 t bl,2 X €22
=1
1=n |@13:=a;;1+ 51,n X €n1 a1z = a1 + b},n X Cn,2
1=1 |az;:=az1 + by X c1 Q22 := @32 + bay X €12
j=2 |@21:= @31 + b2 X €3, @22 1= @22 + b2z X €3
1 =2
J=1n |ag = az, + byn X cn a2 1= @22 + b2,n X Cn2
N
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J=1 a1 i=an1 + by Xy Qn2 i= Gna + bny X €12
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1="n
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&

B =0 + Vi X enm

Fig. 3. Matrix multiplication on an n-processor SIMD computer.
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a ““supervector’”” operation. Simple supervector operations
can be automatically identified in a program. An example
of supervector operation is a vector operation

fori:= 1to 100
aj:=a;+s X b,

where vector multiplication and vector addition are cas-
caded to obtain a higher computation rate than is produced
by activating one pipeline following the other. Fig. 4 shows
how chaining of two pipelines allows the second pipeline
to begin computation before the first is completely fin-
ished.

We can compare the problem of combining vector oper-
ations into chains, or supervector operations, to the MIMD
grain compaction techniques discussed below. In both
cases, we must identify operations that interact closely, one
producing results to be used by the other. Having identified
such operations, we group them together to reduce over-
head—the overhead of memory access in the case of a vec-
tor machine, the overhead of message passing in a private-
memory MIMD machine.

Pipeline and array processors are somewhat similar to
each other in terms of synchronized operation. Because
vector operation can perform only simple combinations of
operations, only theinnermost loop of a set of nested loops
can be vectorized. Such a restriction of pipelining opera-
tions allows a somewhat simpler environment for the pipe-
line processor applications than array processors.

Code transformations can improve the performance of
a program on a vector processor. For example, one can
selectfrom a (multiply) nested loop the one loop that is most
suitable for vector execution and interchange the loops so
that the selected loop becomes the innermost loop [33].
Loop interchange can also change the stride, the addressing

increment between successive accesses to a vector. In For-
tran terms, the stride is the increment in the left-most sub-
script position. A reduction in the stride will mean that suc-
cessive memory references go to more closely adjacent
vector elements, which will usually improve memory per-
formance. For instance, a loop

fori:=1to 100
forj:=1to 100
a,‘”,' = a,-”,-_5 b 1 bw'

would be rewritten in a vector loop

fori:= 1to 100
forj:=1to 100 step 5
fork:=0to 4

8jj+k = @ jak=5 1 Djjsk

The inner loop is vectorizable, but the vector length is only
5 elements. A better result would be obtained by the fol-
lowing loop

for j:= 1 to 100
fori:= 1to 100
a,,-,,- .= a,'”,'_s + b;',‘

in which 100 successive memory references are possible.

The basic idea behind increasing the stride is that pipe-
line processors favor the use of long vectors. That is, the
longer the vector fed into the pipeline, the less effect latency
hasonthe overall performance. Ifinterchanging loops does
not produce an efficient memory reference pattern, then
arestructuring of the data storage, as outlined above, might
be necessary. To maintain a long vector for a better result,
the following guidelines can be used:

* Useseparate scalar variables instead of an array of very
short dimension

= 1 ri=8xb l|lay:i=a,+1r
1t =2 ryi=8 X by lay:i=a;+r,
t =3 r3:=8xby |az:=az+r;3
= Th-1:= Qn_1 =
L=m i i S
I I I 1 l 1 1 il 1 L i l l 1 l t
L I || 1 1 1 I T | 1 T I
0 1 2 n-I n n+l
(a)
i=1 ri=8xb a:=a;+m
§i=2 ryi= 38 X by az :=dz + 72
1= T‘ai:&)(ba (13!-‘:634‘1‘3.
. Ta_1 i= 1=
t=n-—1 1 b
y n = Ay =
t=n
4t - - - 44—+ttt
0 1 2 n-1 n n+l n+4
i (b)

Fig. 4. Pipelined computations a) by supervector operation and b) by two independent
pipeline units.

1864 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989




T e e LR e e VLl e S L e e LR R DA L SRR T S e S S R PR

}“

Sl

LIRS L8 TR

T T TP XY

I R

TR W T ISR M S N T U

* Usefewlongdimensionsinstead of using several short
ones
+ Copy short vectors into a longer temporary vector.

c) Vectorregisters: A vector processor may store its data
solely in main memory, or may supplement memory with
a set of vector registers. By storing vectors in main memory,
amachine like the CDC Cyber-205 can allocate large vectors
freely and provide virtually infinite working space in which
to put data and temporary results. In this type of vector
machine, however, fast memory access is crucial for high-
performance operations. An interleaved memory scheme
permits parallel memory references, and several requests
are simultaneously serviced in a pipelined fashion.

The effectiveness of interleaved memory organization
depends on the vector allocation strategies. If a vector
resides on a single memory module, the memory subsys-
tem can provide only one vector element per memory cycle,
and the vector operand fetch rate will not satisfy the demand
of the pipelines. On the other hand, if a vector is properly
distributed among memory modules that can be (almost)
simultaneously accessed, then memory will be able to keep
up. Normally, interleaving is handled by the memory hard-
ware design, and a logically contiguous vector is automat-
ically spread across memory modules. As discussed above
with array processors, however, if the program references
both columns and rows frequently, skewed storage is pre-
ferred to prevent unexpected operand access delay due to
memory contention, as in array processors [30].

Vector storage in vector registers raises some problems,
as the number of registers is limited. A compiler must care-
fully allocate registers to minimize loading and storing of
data from and to main memory. Long vectors must be split
into segments that will fit into a vector register [34] simu-
lating a doubly nested loop. The following loop

fori:=1ton
a,-:=b,-+C,-

would be modified into a doubly nested loop

forik := 1ton stepo

6 := min (n, ik + o)
fori:= ik to 6
a:= b; + ¢

where the innermost loop is (directly) vectorizable while
outer loop is a sequential loop. The length of segment o is
given by the vector register size. Such a loop segmentation
overcomes vector register size limitations, but it requires
some overhead for the outer loop computation. Despite the
outer loop overhead, the vector register approach prom-
ises to improve performance, as vector registers can be
implemented with a faster memory technology and thus
can deliver operands to the pipeline better than main stor-
age can.

c) Resource Utilization by Programming: The basis for
most vectorization in a program is the loop. To automate
the process of loop vectorization, the compiler must do two
things. First, it must locate the places where vectorization
is possible. The compiler must then determine how best to
exploit these vector operations on the target machine. If
loop bounds for the loop are known at compile time, acom-
piler can perform analysis to determine which loop vec-
torization will execute fastest. It is possible that scalar exe-
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cution might be faster than vector execution, if the loop is
small. However, if the loop bound is not known at compile
time, this analysis cannot be done, and the decision must
be made by default, or with some additional information
provided by the programmer. If a loop is not suitable for
vectorization, there may be awayto transformittoan equiv-
alent computation that is vectorizable. Several program
transformations are available to the compiler that can
enhance vectorization, including statement reordering,
statement substitution, and loop interchange [1]. The idea
behind these transformations is to reduce the number of
dependencies between loop iterations; most of them are
machine independent.

A simple case of vector operation is a loop in which there
are no dependencies between iterations. Such a loop can
be vectorized by partitioning the loop body into several
simple loop bodies in which every loop body is a few pipe-
line operations that are allocated to a corresponding pipe-
line(s). Fig. 5(a) shows the case with two statements inside
aloopwhere no dependencies exist. This loop can be trans-
formed into two independent loops

fori:=1ton
S1;

fori:
Sy,

Il

Tton

and these two vectored loops can be targeted for multi-
plication and addition pipelines. Similar transformations
are possible for several loops that have some dependencies
inside loops. The original loops and data dependence rela-
tions are shown in Fig. 5. The structure of the vectored
instructions for the nexttwo loops would be identical to Fig.
5(a).

fori:=1ton fori:=1ton fori:=1ton—1
8, a;:=b;, x s s, a;:=b; x s s 8 i=agy X8
32 c;:=b; + d; 8, ¢ = a; + d; 87 a; :=b; + d;

(a) ~ (b) (©)

Fig. 5. Directly vectorizable loops a) s; and s, have no
dependences; b) modified values of s, is used in s,; ) s, uses
a value before modified in s,.

a) Resolution of conditionals: Performance of the
pipelineisreduced by “irregular’”” operations, such as inter-
ruptsand branch instructions. An interruptinstruction pro-
hibits the next immediate instruction from entering the
pipeline until the pipeline is drained, and a branch instruc-
tion may be halfway down the pipeline before a branch
decision is made. At this point, all prefetched instructions
become useless. To alleviate this problem, pipelined hard-
ware frequently incorporates techniques such as multiple
pipelines ordelayed branches. For extensive techniques for
pipeline branch instruction manipulations, refer to [35].

The frequency of conditional statements within loops
makes most large-scale vector processors equip several
effective conditional branch processing approaches based
on the mask vector register [31], [32]. A mask vector indi-
cates the true-false values of conditional statements, and
controls the arithmetic pipeline units. Acomputation result
is discarded if the associated mask vector element is false,
while the result is stored back to a vector if the mask vector
element is true. This architectural feature enables vector-
ization for the loops with conditional operations. However,
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a better result can be promised by reducing conditional
operations inside loops as much as possible by rewriting
them without conditional operations. The following loop

M 2= ===
fori:= 1ton
if (m < n) then

a:=b; Xs
else
d;j i= b,-/s

could be rewritten using separate loops for each compar-
ison statement:

S He ¢ o
fori:=1ton
if (m < n) then
aj:=b; Xs
fori:=1ton
if (m = n) then
a;:= bj/s

Now each loop is vectorizable and comparison statements
control the mask vector registers. The example loop can

again be rewritten to a loop that has no comparison state-
ment:

me= -« -

fori:=1tom
a:=b; Xs

fori:= mton
a;:= b;ls

Unlike conditional operations, conditional control can-
not be vectorized, because a branch causes “irregular”
operations of the computation. One transformation tech-
nique for loops with conditional control is I[F-conversion,
which transforms loops with conditional control into loops
with conditional operations [36].

b) Resolution of recurrence: A recurrence is an itera-
tive computaticn in which the computation of the current
value depends on a value from a previous iteration. This
data dependency between iterations prevents execution in
parallel, although simple recurrences can sometimes be
handled by vector pipelines. Transformations of the loop
may remove the recurrence by reordering the two state-
ments, by splitting the loop into two or more loops, or by
duplicating computation and substituting them into other
statements within the loop body [1]. Consider a loop

fori:= 110 n
a,':: bf X S
bj:= aj44

such that the used variable b, is modified soon. The loop
can be vectorized by using temporary vector t; restructur-
ing the loop (which is known as node splitting)

fori:=1ton
t; e b; X S
bj:= a1
a; :=t;

where three statements are recognized as vectored instruc-
tions. Another possible approach is to substitute state-
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ments producing a loop

fori="1to.n
a,-:——-b,-XS
b,-ﬁ12=b,-XS

where two statements inside the loop are also vectorizable.

B. MIMD Allocation Strategies

The flexibility of MIMD machines leads to a variety of
problems in allocation. As the programs executed by indi-
vidual PEs can be practically anything, there are many pos-
sible ways to divide an application and distribute it among
the processors. Highly independent processes may be
arranged in a pipeline. Loops may be parallelized and all
iterations performed simultaneously. Small pieces of a
computation may be divided and executed dataflow-style.
Choosing among these possibilities is a matter of balancing
the characteristics of the program and the capabilities of
the machine to achieve a lot of parallel execution and little
communication overhead. The size of the parallel program
components and the style of scheduling them are the two
most commonly considered parameters.

1) Granularity and Communication Costs: One can view
parallelism extraction from programs as partitioning a pro-
gram into concurrent tasks called grains [37]. Grain size may
vary anywhere from an elementary mathematical operation
(fine grain) to an entire program (in this case we are back
in sequential mode). There is a trade-off: With fine grains,
there is likely to be a great deal of potential overlap of com-
putations, but also a great deal of overhead in scheduling
the grains for execution and in communicating data values
between grains. For very large grains the situation is
reversed: Overhead is reduced but sois parallelism. Overall
performance can apparently be improved by finding a
happy medium [7]. See Fig. 6.

Time
Execution Time
Computation Time
Overhead
$ Granularity
Fine Coarse

Fig. 6. Trade-off between parallelism and overhead.

Medium granularity coalesces several fine grains in such
away thatdecreases the intertask synchronizations without
sacrificing the parallelism within the tasks. A typical medium
granularity partioning is loop parallelization, in which indi-
vidual loop iterations are considered as independent tasks.
In this case the speedup depends on the loop bounds.
Nested loops provide the opportunity to exploit more par-
allelism of the programs by interchanging the loops. Sim-
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ulation [38] shows that the medium granularity approach
based on loop parallelization achieves fairly good speedup.

More effective parallelization techniques try to exploit
potential parallelism beyond the loop bodies [7], [9], [19].
They begin exploiting parallelism from the basic blocks that
are a sequence of instructions having no branches except
at the end of the block, and then expand detection of par-
allelism for the entire programs that are represented by
global control flows among basic blocks. As each basic block
contains only simple, statically determined data depen-
dencies among its component operations, optimum basic
block partitioning is easily established [39].

Kruatrachue and Lewis [19] proposed a grain-packing
algorithm in which the grain size is automatically deter-
mined in away that reduces the execution times of the basic
blocks by balancing execution time and communication
time. The basic technique of this method is to duplicate the
small grains where necessary to reduce overall commu-
nication delays.

Another source of parallelism of the program is detected
from control flow constructs such as loops and branch
instructions. Since the number of iterations of a loop and
the results of a conditional branch are usually determined
atruntime, itis usually difficult to utilize the entire potential
parallelism of global control flow. A global fine-grain com-
paction methodology has been proposed in [40], in which
the control flows of the programs are heuristically guessed
during compile time. With these guesses, global control
operations are treated as ordinary basic blocks so that par-
allelism detection is easier. The key to performance is the
accuracy of the guesses.

Because private-memory machines perform better with
larger-grain parallelism, it is advantageous to find that the
outerloop inasetof nested loopsis parallel. The same loop-
interchange techniques used to move parallel loops to the
interior—where vectorization can be done—can also move
a loop to the exterior, where large-grain parallelism is pos-
sible.

2) Scheduling: Given a program that has been divided
into parallel tasks, the job of a scheduling strategy is to

determine the order in which those tasks run, striving as

always to improve performance. If the order is determined
at compile time, it is called static scheduling. Static sched-
uling relies on predictions of execution times of partitioned
tasks and communication costs (or amount of message
traffic) between tasks. The success of static scheduling
depends on the accuracy of the prediction. In many cases,
such predictions can be quite reliable; van den Bout [41],
for example, found that signal and image processing appli-
cations exhibit very regular behavior. In other cases, of
course, a priori estimates of program behavior will be inac-
curate and static scheduling will be inferior to dynamic
scheduling. The attraction of static scheduling is that the
scheduling cost for a given program is incurred only once,
at compile time.

Dynamic scheduling is performed at run time. The goals
are the same as in static scheduling, to arrange tasks onto
processors so that processors are kept as busy as possible
and to minimize wasted effort, such as time spent waiting
for communication. Dynamic scheduling does not depend
on predictions of program behavior, instead making deci-
sions using information collected from the current exe-
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cution. Thus it is more flexible and potentially more accu-
rate, but at the cost of additional run time overhead.

Tanenbaum and van Renesse have pointed out [42] that
task allocation techniques with the goals of maximizing
throughput, mimimizing response time, and keeping the
load uniform have somewhat opposing views depending
on theirassumptions about whatis known and what is most
important. Three classes of scheduling techniques show
this relationship.

* Coscheduling: Due to the overhead of context-switch-
ing, processes that communicate frequently should
run simultaneously on different processors [43]. By
putting all the members of a process group that work
together on different processors, one has the advan-
tage of N-fold parallelism, with a guarantee that all the
processors will be run in parallel to maximize com-
munication throughput.

* Clustering: Interprocessor communication overhead
causes delays. To cluster processes that communicate
frequently on the same processor minimizes com-
munication costs. Thistechnique relies onthe premise
that communication costs can be statically deter-
mined, yielding agood static schedule. Thisis the tech-
nique used by [7], [9], [19] where a single task is being
partitioned and scheduled.

* Load balancing: If we know nothing about the future
communication patterns of a process, then it is best
to distribute work loads evenly across the processors
to preclude any process from becoming a bottleneck.
To keep auniform distribution of load (balanced load),
each processor estimates its own load and processes
are created and migrated. Load balancing is discussed
in more detail in the next section.

Instruction scheduling is the process of scheduling
instructions on a processor to maximize throughput. In the
context of instruction pipelines [44], where several instruc-
tions overlap execution phases, a common performance
metricis the number of instructions thatare issued per clock
cycle. Because the possibility exists that instructions may
interfere with each other, it may not be possible to keep the
pipeline full.

Another type of instruction scheduling is used for VLIW
(very long instruction word) architecture. Here, many oper-
ations expressed in a high-level language are folded into
one very long instruction word. The instruction word con-
trols, in parallel, all of the functional units of the processor.
The task is to pack as many operations into one word as
possible. The more concurrency that can be found in the
code the more packing that can take place.

Scientific programs are deterministic in the sense that
control-paths through the programs tend to be predictable
because they are generally data-independent. Knowing
these control paths at compile-time allows us to pack
instructions into an instruction word much more efficiently
than if we did not know control-paths statically. For exam-
ple, when a branch is taken that was not predicted when
scheduling took place, part of the instruction word will be
wasted, incurring a loss of parallelism.

Trace scheduling [40] is atechnique that treats many adja-
cent basic blocks of program code as one basic block. This
allows parallelism to transcend the artificial boundaries of
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a basic block. The basic idea is to pick an execution path,
or trace, from a program and compile it as straight-line code.
We will have to make conjectures as to which way con-
ditional branches will go at run time. Much research has
been done on this topic; one technique is to always predict
that backward branches will be taken. The reason is that,
in all likelihood, it is a branch in a loop statement that will
fall through at the end of processing an array of data [35].

Trace-scheduling can be viewed as static scheduling of
a multiple pipeline. All instructions that can execute simul-
taneously are loaded into the multiple functional units of
the pipeline. In order to mimimize pipeline delays in the
presence of conditional branches, trace-scheduling exe-
cutes several different branches simultaneously, ultimately
discarding results from the branches not taken. This strat-
egy is equivalent to multiple pipelines.

3) Load Balancing: Load balancing as an MIMD resource
allocation strategy is based on a key performance enhance-
mentissue that overall processor utilization can be achieved
by distributing system load uniformly on all processors.
Once we have decided that a problem is amenable to load-
balancing, questions about static and dynamic techniques
arise. Because of the run-time-dependent nature of load,
static load balancing is sometimes called load-balanced task
allocation [45]. Saltz et al. have worked on a comparative
analysis of static and dynamic load-balancing strategies [46].

Dynamic scheduling methods [46]-[49] inherently resolve
the load-balancing problem at runtime. That is, tasks are
created on or migrated to less loaded neighbor processors
to keep all processors as busy as possible. All processors
are kept busy until a precedence relation between two or
more processors prohibits their further execution.

Load balancing in static scheduling looks at the possible
communications between tasks and tries to arrange tasks
to minimize time spent waiting on communication. Graph-
theoretic methods model this balancing problem as a min-
imum-cut/maximum-flow network problem. Although
optimal static algorithms are available [50], heuristic algo-
rithms are often used, which trade off optimality for speed
[45], [46]. For example, list-scheduling techniques [51], [52]
are a class of static scheduling methods in which tasks are
assigned priorities and inserted in a priority queue. When-
ever ready tasks contend for processors, the next process
to be assigned to a free processor is the one at the head of
the priority queue. This characteristic of list scheduling
tends to evenly distribute tasks over all processors, that is,
balance the load. It is generally known that list-scheduling
strategies yield optimal load balance on an “ideal”” parallel
computing machine in which synchronization overhead is
negligible [53]. These scheduling strategies are not ade-
quate in real parallel computing environments because in
practical parallel machines’ synchronization overhead is
not negligible.

4) Memory Allocation: In shared memory MIMD
machines, the memory is typically partitioned into modules
so that multiple memory references can be simultaneously
served. Issues of memory interleaving and array distribu-
tion are similar to those for vector and array processors.
Memory conflicts and race conditions can arise on any
variable, if two or more processors attempt to simulta-
neously access or update the variable.

If a variable is frequently accessed by several different
tasks, multiple copies can be distributed among the mem-
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ory modules so that multiple accesses can be concurrently
served. The duplication scheduling strategy of [19] might
be considered an extreme example.

A race condition occurs if more than one processor tries
to read and write a shared variable at the same time. Some
sort of synchronization, such as a critical region or a
semaphore, must be employed to assure proper results. In
some cases, variable renaming [14] can solve the problem
without a need for explicit synchronization. Different uses
of a variable are split into separate variables, removing the
conflict entirely. In private memory MIMDs, no variables
are directly shared. Copies of a variable residing on sep-
arate processors can be thought of as being implicitly
renamed. The message-passing event with which a value is
shared with another processor also provides synchroni-
zation, albeit at a noticeable communication cost.

If multiple copies of global variables exist in MIMD
machines, there may be a coherence problem, as distinct
copies of the global variables must be kept consistent. Sev-
eral approaches would be possible to solve this coherence
problem for shared-memory MIMDs. One approach is a
“’static coherence check,” which avoids multiple copies of
shared variables and allows only one copy of global vari-
ables. A second approach is ““dynamic coherence check,”
inwhich multiple copies of global variables are allowed, but
they are discarded when the global variables are modified
[54]. A more systematic approach is proposed in [55], in
which the compiler detects the variables that can cause a
coherence problem and carefully allows multiple copies of
them. As Lee et al. [55] point out, this approach is quite effi-
cient, although a compiler must do more work.

In a private-memory MIMD, more severe coherence
problems may arise. The primary objective of resolving the
coherence problem hereis to ensure that correct values are
used whenever a global variable is referenced. This prob-
lem can be resolved by inserting a message-passing call for
each global variable as it is updated. The communication
primitives can beinserted atalgorithm development phase,
either manually or by versatile compilers which analyze the
program precedence relation, task partitioning, and sched-
uling at compile time.

5) Loop Scheduling: As loops in a program are the major
source of parallelism and can easily consume a large por-
tion of computing resources, allocating loops onto pro-
cessors is an important issue for supercomputing. There
has been a considerable growth of interest in detecting par-
allelism of loops, in scheduling loops, and in efficient
implementation [1], [48], [49], [56]-[58]. The major difference
of loop processing between MIMD and SIMD processors
is that MIMD multiprocessors can schedule multiple nested
loops to processors while SIMDs allow only a single loop
parallelization. |

a) Loop structure: Loop structures can be classified
based on their execution behavior [58]. Loops in which every
iteration can be evenly distributed onto the processors and
can simultaneously start with no interaction between pro-
cessors are called poaLL. Such loops can effectively utilize
any kind of parallel computer, including SIMDs. Loops that
contain dependencies between iterations are not directly
parallelizable, and parallelization of such loops may even
reduce performance due to interprocessor communication
overhead. A loop in which the next iteration can begin only
after the current iteration has finished is clearly a nonpar-
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allelizable loop, and every iteration of the loop must be exe-
cuted sequentially to ensure the correct result. Such loops
are called serial loops (poser). For many loops with depen-
dencies, a certain amount of parallelism can be exploited.
Suchaloopisoneinwhichthe nextiteration can beginonly
after some delay T, after the current iteration begins. If T,
is less than the execution time of the loop body, then dis-
tributing iterations to processors would clearly shorten the
completion time of the loop execution. Suppose T, is the
execution time of the loop body. Then, the percentage of
overlap that is possible within a loop is measured by T,/T,.
If T) < T, then the loop is strictly a poser loop; if T, = 0 then
itis apoALL loop; and otherwise it is a class of parallelizable
loop known as a do-across (or DOAcCRr) loop. In the global
sense, DOALL and DOSER loops are special cases of DOACR.

A more systematic representation of T, is to express it by
the distance of the dependency or the recurrence factor §,
that is, the number of iterations crossed by the precedence
relation, and the communication overhead to reference the
dependentvariable(s) across é-iterations. The following loop
has a data dependence that crosses iterations:

fori:=11ton
S1 a;:= b; + di_1p
S d,':= e + a;

This loop would be a non-po ALt loop with é = 10. The loop
is, however, partially parallelizable because the modified
array elements of the vector d are used after 10 iterations
have passed, producing the parallel loop

forpe:=0to 9
fori:= 11 + pe to n step 10
Sq aj:=b; + d;_q
S, d,:= e; + a,

where the outermost loop distributes iterations to proces-
sors 0 to 9, utilizing 10 processors with no delay. The loop
can utilize no more than 10 processors. This technique is
known as cycle shrinking. Cycle shrinking is generally not
used for vector processing unless é is big enough to utilize
a pipeline. '

Parallelism is severely restricted when 6 is small. Con-
sider a non-DoALL loop such that 6 = 1:

fori:=1ton — 1

51

S, a,-:=b,-+d,-
53 =

S4 d,’+1:= e + a,
55 .

Statement s, references an element of array d that has been
computed in the previous iteration. Suppose that iterations
k and k + 1 are distributed to two processors p, and
P« +1, respectively. Then p, ., could execute s, only after
d, 41 has been brought to the processor. If the communi-
cation overhead to pass d; , ;exceeds the speedup obtained
by executing s, in parallel with the statements of the pre-
vious iteration, then distributing iterations to processors
will not provide better performance than allocating all iter-
ations to a single processor. Such a metric is useful to iden-
tify non-DoALL loops into bOACR and DOsER loops [7].
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b) Static scheduling: Loop scheduling can be done
statically or dynamically. Static scheduling assumes that the
loop bounds are known at compile time, dependence rela-
tions within the loop are fixed throughout the execution,
and execution time of an iteration is consistent. Then, all
iterations can be evenly distributed to the processors by the
compile-time scheduler [14], [58]. The main advantage of
static scheduling is its low run-time overhead and its
straightforward task execution mechanism that provides
easy execution tracing and debugging.

Often, however, dependence relations and execution
time of each iteration are unpredictable because of con-
ditional branches inside the loops. And frequently the loop
bounds are sometimes unknown at compile time. Despite
the difficulties, static scheduling is widely applied to super-
computing, particularly for the message-passing MIMDs,
to prevent excessive scheduling overhead owing to expen-
sive communication overhead. .

For simple loop structures, optimum results could be
expected by careful implementation, applying a few of the
loop parallelization techniques described. Notice that the
optimal static scheduling algorithms usually involve poly-
nomial or even exponential complexity.

c) Dynamic scheduling: Dynamic scheduling can allo-
cate iterations at run time, in which an iteration is assigned
whenever a processor becomes available [48], [49], [59]. The
dynamic scheduling mechanism is a kind of “barrier syn-
chronization” mechanism associated with each loop in the
construct to provide loop index synchronization. The basic
idea behind dynamic scheduling is to provide mutually
exclusive variables that are shared but can be accessed
strictly in sequential order as the loop behaves. Such
variablesinclude the loop indices, dependentvariables, and
recurrence factors, that are used mostly for the loop syn-
chronization. Mutually exclusive variables are tested when-
ever a processor needs to reference the dependent variable
soas to determine whether the dependent variable has been
ready to be used by the process. Similarly, the processor
that has completed producing a dependent variable flags
the corresponding mutually exclusive variables to allow
other processes to consume the dependent variable.

For a non-poALL loop shown below,

fori:=3ton
$q d; .= b,""d,'_z
P d;::- e,-+a;

would be scheduled at run time

foriy= 3ton

lin while (not R, _,) wait
Sq a;:=b,-+d,'_.2

S) d;' o= iy b 5 a;

Fosuse set R,

where n — 2 iterations are dynamically distributed, and test
simultaneously whether the mutually exclusive variable
R;_, has been set. If R is not yet set, then iterations are
blocked at /;, statement, and if R is set then the processor
that performs the corresponding iteration would continue
s, and s,. Once a processor has finished s,, it has the right
toinvade the mutually exclusive areaand setR;. Thisisdone
in I,y statement.

Here a barrier synchronization counter is R that book-
keeps the iterations that have already completed. If the
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value of a barrier counter is equal to a loop bound, the next
immediately active instance is activated when the barrier
counter becomes zero. As shown in the example, the
synchronization instructions ensure that data dependen-
cies between iterations are preserved. With synchroniza-
tioninstructions inserted, non-poatLloops are transformed
into DOALL loops, and then they can be allocated as DoALL
~ loops [57].

Tang and Yew [59] propose a self-scheduling technique
in which one iteration is allocated to an idle processor by
increasing the loop indices in such a way that promises a
synchronized iteration as discussed in the previous exam-
ple. The loop scheduling, therefore, involves n dispatch
operations where n is the number of iterations. Because
self-scheduling allocates one iteration at a time, it would
promise the best performance in terms of load balancing
and processor utilization. Itis not always optimal, however,
if n times of iteration assignment overhead is not negligible
compared to the execution cost of the loop. For instance,
n iterations on p processor system would incur n/p assign-
ment where p iterations are assumed to be dispatched
simultaneously.

Rather than issuing a system call to the operating system
one iteration at the time, processors can schedule them-

selves by “fetch-and-adding’” a shared variable to get loop

indices of a chunk of iterations. The main self-scheduling
code for each component consists of three parts: loop self-
scheduling, the original loop body or instance, and book-
keeping of the completed iterations. Suppose mis the num-
ber of iterations for chunks. Then the number of loop
assignments at run timewould be reduced to 1/m of the self-
scheduling. However, it is hardly possible to determine the
optimum chunk size for the best result, and the balanced
load distribution would be lost. Guided self-scheduling
resolves the difficulties of loop partitioning by a simple
strategy that decreases the chunk sizes by 1 for every chunk
allocation [48]. At the beginning, the chunk size is equal to
that of the extreme case of the chunk allocation (chunk size
is n/p), and at the last stage, the chunk size holds one iter-
ation (as self-scheduling does). Thus, guided self-sched-
uling compromises the two extremes of dynamic loop allo-
cations, reducing the run-time scheduling overhead while
improving the processor utilization [48].

Dynamic loop scheduling becomes more effectively par-
allelized by using the technique discussed in Section 3-A.
Most parallelizing (vectorizing) techniques are applicable
to improve the parallelism of loops. Particularly, loop inter-
change permutes a pair of nested loops so that the outer
loop becomes inner loop and vice versa. The goal of loop
interchange is that the longest possible set of parallel iter-
ations corresponds to successive values of the outermost
loop of the nested loops.

Loop coalescing transforms a series of multiple one-way

nested DOALL loops into a singly nested poAaLL loop [48]. A
DOALL loop

fori:=1ton
forj:=1ton
a,’”; .= bu‘ + v e
would be transformed into a single loop
fori:= 1ton?

ool
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jk:=f—n[!_1]

n
i, jk 2= bigj + *

where the result requires n?iterations with one loop. When
loop coalescing is applied, the overhead associated with
the access of loop indices is reduced.

Loop distribution distributes a loop around each state-
ment in its body, or around code modules inside the loop
that form strongly connected components of the prece-
dence relation. Itis useful for transforming multiway nested
loops to one-way nested loops

fori:= 1% n
a:=b;+ +--
Ci:= @j_1

would be transformed into two DOALL loops

fori:=1ton
aj:=b;+ ---

fori:= 1ton
Ci:= a1

The modified loops have no dependencies and do not
require loop synchronization between two loops, but the
number of total iterations to be scheduled is increased by
2n. Thus, the decision to use distribution to synchronize a
loop must be based on the trade-off between the start-up
and scheduling overhead for the parallel loop.

IV. THe RELATIONSHIP BETWEEN MODELS AND ALLOCATION

Resource allocation is a problem common to all “real”
supercomputers and, aswe have seen, is adifficult problem
to solve. Consequently, theoretical computer scientists
involved with designing parallel algorithms have found it
helpful to use idealized machine models that ignore hard-
ware constraints, thereby freeing themselves to concen-
trate on the exploitation of parallelism in the given problem
domain.

Programmers code in high-level computational models,
which must then be translated by a compiler and resource
allocator tofit the low-level machine model. Good resource
allocation is difficult and optimality is in general NP-com-
plete. A resource allocator requires that the programmer
still program in an “intelligent’”” fashion—one suitable to a
machine model. Well-known vectorizing compilers trans-
late sequential models of Fortran to vector or array com-
putation models. We will now examine two other environ-
ments and the ways that the high-level model is translated
to a low-level one.

A. SISAL

SISAL is a single-assignment data-flow language that is a
descendent of Val [12], [60]. SISAL provides many implicit
and explicit language characteristics that exploit parallel-
ism, which must be mapped to a machine. Loops in SISAL
are parallel unless explicitly stated as sequential. The single
assignment rule reduces data dependencies, thereby
increasing exploitable parallelism. The stream data-type in
SISAL abstracts a FIFO data structure associated with pro-
ducer-consumer, i.e. pipelined, process relationships.

Data flow graphs represent fine-grained parallelism—
generally a node for every operation, with arcs between
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nodes representing communication requirements. SISAL
Is an attractive language to parallelize because it disallows
many of the things that make it difficult to parallelize tra-
ditional imperative languages such as Fortran, Pascal, C [61].
For example, SISAL prohibits side effects.

1) The High-Level Computational Model: Can programs
written in SISAL be targeted on medium to coarse-grain
multiprocessors? Sarkar and Hennessy [9] have developed
a static partitioning and scheduling scheme that takes SISAL
program graphs as input and produces, at compile time, a
task partition and a schedule using a parameterized com-
munication model. Parameters are:

processor component: The duration for which a processor
participates in its communication.

delay component: The fraction of the communication time
during which the producer and consumer processes are
free to execute other tasks.

These parameters in turn depend on the size of the com-
munication, interprocessor distance, cost of reading inputs,
cost of writing outputs, and communication delay.

2) Motivation: Standard dataflow analysis techniques can
provide precise information on a program’s communica-
tion patterns. The difficulty lies not within uncovering a pro-
gram’s communication requirements but in modeling a
machine’s ability to handle communication traffic. Bus and
memory contention, synchronization, communication
errors, routing strategies, interprocessor distances, and
processor contention all tend to make communication
modeling nondeterministic. Sarkar and Hennessy’s pa-
rameterized communication model is robust enough to
handle these obstructions, thereby answering our funda-
mental question of what can be done in parallel and what
should be done in parallel.

The dataflow model presents an elegant computational
abstraction. Here the actual target machine is not a dataflow
one but an arbitrary multiprocessor. Task granularity is a
function of the number of processors and interprocessor
communication costs. A dataflow graph starts at a very fine
grain and grains are continuously combined until a suitable
task size is achieved. SISAL, as a language, is machine inde-
pendent. The programmer assumes that the compiler or
some resource allocator will exploit the parallelism (explicit
and implicit) as best as it can, given a particular machine

“model.

Linear speedups on a variety of test cases have been
reported. Because SISAL is designed as a language to be
parallelized, almost linear speedups have been attained in
nonnumerical algorithms. (On a 10-processor simulation,
speedups of 10, 9, 8, 8 were attained for Towers of Hanoi,
Merge-exchange sort, eight queens, and Multi-precision
multiplication, respectively).

3) Two SISAL Implementations: Researchers at Colorado
State have targeted SISAL to two different multiprocessors:
A Denelcor HEP and a Sequent Balance—both are shared
memory computers [62]-[64]. Implementing the dataflow
model of computation on a non-dataflow architecture
requires careful handling of resources in order to control
the possibility of too much parallelism, which could cause
resources to become saturated and communication over-
head to become unacceptable [65]. SISAL requires signif-
icant run-time support because of the need for dynamic
allocation of resources. Parallel loop bounds and recursion
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depth may not be known at compile time, and stream sizes
may shrink or expand.

The Sequent implementation is a descendent of the HEP
implementation. Many of the optimizations presentin high-
performance compilers were not implemented in early
SISAL compilers. Consequently, the goal of that work has
been to efficiently utilize the underlying hardware. This has
proven successful; speedups similar to those of imperative
programs with explicit parallelism have been achieved. This
is significant, as parallelism in SISAL is implicit.

B. The Connection Machine

Connectionism is a computational model that attempts
to model the brain’s intelligence as millions (or billions) of
neurons (processors) working together and in parallel. The
Connection Machine’s architecture was originally designed
to implement these connectionist networks [66] but has
since been used successfully in many other areas, which
will be enumerated later.

The Connection Machine-2 (the second-generation Con-
nection Machine) [67] is a SIMD computer with 65 536 (2'°)
processors connected in a binary 12-cube. Each node of the
12-cube contains 16 bit-serial processors, each with 64K of
memory (for a total half gigabyte of memory). The Con-
nection Machine can be viewed as a coprocessor attached
to a front-end computer (usually a Vax or a Symbolics), act-
ing as an extended “intelligent”” memory.

From this terse description we can readily see that the
Connection Machine poses several problems in managing
three resources:

* The processors—The processors are viewed as a
dynamic resource. When programming the Connec-
tion Machine (usually in C or Lisp) processors are allo-
cated as they are needed and are viewed as “virtual”
processors.

- The memory—Efficient use of a half gigabyte of mem-
ory can be unwieldy. The message-passed structure of
communication and the limited' number of proces-
sors makes each processor’s local memory a valuable
resource.

* The host computer—Itis the job of the host computer
to perform all other tasks that have not been desig-
nated to the Connection Machine. This will mainly
involve 1/0 but also any computational task that may
not map well to the Connection Machine. The host
computer can potentially be asupercomputer, making
it a valuable resource.

The hypercube network provides a flexible communi-
cation network. Many other networks are subsumed by or
equivalent to the hypercube by altering processor address-
ing schemes [69]. On top of the hypercube network the
Connection Machine also implements a grid network,
which allows nearest neighbor communication. The com-
bination of these two networks and special-purpose rout-
ing hardware allows ‘‘programmable connections”
between the processors. This is the source of its power.

'In the context of connectionism, 64K processors is still a small
amount. The Connection Machine can process 36 x 10" bits of
data/second, a factor of 20 million short of the estimated power of
the brain [68].
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1) Applications of the Connection Machine: The Con-
nection Machine implements very fine-grained parallelism.
Tasks that map well to it are applications that involve large
amounts of data. This includes document retrieval [70],
memory-based reasoning (semantic and neural networks)
[66], graphics [71], fluid-dynamics [71], [72], and list pro-
cessing [73].

An obvious question to address is how is the Connection
Machine programmed? Versions of Lisp and C have been
implemented for the Connection Machine. Suprisingly, one
of the reasons for the success of the Connection Machine
has been its ease of programmability. This ease is due to
the designers’ success in making the underlying topolog-
ical structure of the architecture transparent to the pro-
grammer. The machine is simply a dynamic pool of pro-
cessors to choose from—all seemingly accessible with the
same amount of overhead. Hillis [66] refers to them as vir-
tual processors. The connection machine is programmed
in a data-parallel style. Data-level parallelism (as opposed
to control level) performs the same operation(s) across mul-
tiple portions of the datain a manner similar to that of SIMD.

This ““architectural transparency,’’ data-parallel program-
ming style, and the “illusion”” of an unbounded processor
pool and unit-time processor communication makes pro-
gramming it very similar to programming a PRAM, as was
discussed earlier. It is important to note that, in reality, the
processor pool is not unbounded and communication
overhead is never negligible. This idealized view of pro-
gramming is very convenient, but convenience does not
imply that a good algorithm is being used. It only aids in
the design. The reader is referred to [23], [73] for a discus-
sion of “efficient’”” parallel algorithms.

Example: A simple example is finding the end of a linear
linked list [73]. At first glance this problem seems very
sequential. That is, in order to get to the end of the list one
must traverse every element before it. On the Connection
Machine, though, data is mapped across the PEs, so what
is really happening is that we have set up a linked list of
processors. The idea is simple: On iteration i/, each pro-
cessor begins traversing its successor cell, i + 2°, in parallel.
On a successive iteration i + 1 each processor begins
searching and will now examine the cell at i + 2" positions
down the list (in parallel). On yet another iteration /i + 2,
each processor examines the cell i + 22, positions down the
list—and so on. Several cells are examined more than once,
but it is easy to see that each processor will reach the end
of the linked list in no more than log, n iterations. Fig. 7
shows the pseudocode that performs this parallel search.

for all k in parallel do
elem[k] = nezt(elem[k));
while elem/k] # null and elem/[elem[k]] # null do
elem[k] = elem[elem[k]];
end do
end do

Fig. 7. A parallel search for the end of a linked list.

V. CONCLUSIONS

The various resource allocation techniques described
above have a lot in common. This fact should not be overly
surprising. In all cases, the goal is to improve performance
by maximizing utilization of resources. There are two basic
ways to achieve this goal: 1) rearrange the work to keep the
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processing resources busy, and 2) minimize the time lost
to overhead, waiting for data or waiting for synchroniza-
tion. We need to rearrange the work to keep pipelines full,
to create vectorizable computations, to keep multiple pro-
cessors busy. We need to minimize overhead to reduce
pipeline interlocks, memory contention, and message
passing.

The techniques used for resource allocation vary con-
siderably in their specifics, but in their abstract ideas they
are very much the-same.

Programming a supercomputer effectively is a complex
and challenging task. Future generations of supercompu-
ters will presumably have more parallel capabilities and be
even more complex to program. Fortunately, we can expect
that future compilers will be able to optimize parallel
decomposition and allocation automatically, just as current
compilers can optimize sequential code. Vectorization
techniques, from analysis to the many restructuring tech-
niques, are by now well-established and available in com-
mercial compilers.

Currently, the best-known commercial supercomputers
are vector and array processors. Hypercube and other
MIMD machines are the subject of considerable research
and commercial development, and we can expect to see
more such machines, with much more software support
than is currently available.

One should realize that all of the automatic allocation
techniques do not relieve the programmer of the task of
finding a good algorithm. The best resource allocator can-
not make up for an inefficient algorithm, nor can it trans-
form an algorithm that is a poor match for the underlying
machine model. A programmer should understand the
problems that face aresource allocator, use this knowledge
to choose a target machine that is suitable to his problem,
and then structure his code in a suitable form.
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