Lenz's Law Lab Worksheet

Make diagrams for magnetic poles moving toward and away from each end of a coil for a total of eight (8) diagrams. On each draw

* the DIRECTION OF \vec{B} on both poles of the magnet (labeled arrow),
t the dIRECTION OF $B_{\text {ind }}$ on both ends of the coil (labeled arrow),
t the WIRES so they MATCH THOSE ON YOUR COIL,
* the direction of induced current, $I_{\text {ind }}$ in the FRONT OF THE COIL (up or down)
* the direction of $\vec{I}_{\text {ind }}$ THROUGH THE GALVANOMETER
* the ARROW IN THE GALVANOMETER as it appeared while the magnet was moving
* circles on the right indicating the direction of the magnet's field, \vec{B}, in the coil due to the magnet and whether Φ is increasing or decreasing, the direction of the induced field, $\vec{B}_{\text {ind }}$, and the direction of $\vec{I}_{\text {ind }}$ through the galvanometer.
The first one, with a south pole leaving the coil is shown. You must do the other seven.

Direction of $\overrightarrow{\mathrm{B}}: \longleftrightarrow$
Change in $\Phi:$ increase decrease
Direction of $\overrightarrow{\mathrm{B}}_{\text {ind }}:$

Make diagrams for two coils and a knife switch. This is a total of four (4) diagrams. For each draw

* the WIRES so they MATCH THOSE ON YOUR COILS (one is done for you),
* the direction of the current, \bar{I} in the FRONT OF THE SOURCE COIL
* the DIRECTION OF \vec{B} in the source coil
t the DIRECTION OF $\vec{B}_{\text {ind }}$ in the detector coil,
* the direction of induced current, $I_{\text {ind }}$ in the FRONT OF THE DETECTOR COIL
* the direction of $\vec{I}_{\text {ind }}$ THROUGH THE GALVANOMETER
* the ARROW IN THE GALVANOMETER as it appeared while the magnet was moving
$*$ circles on the right indicating the direction of the flux, Φ in the coil due to the magnet and whether Φ is increasing or decreasing, the direction of the induced field, $\vec{B}_{\text {ind }}$, and the direction of $\bar{I}_{\text {ind }}$ through the galvanometer.
The first one, with the switch open is shown. You must do the other three.
i) Switch Open

Direction of \vec{B} :

Change in Φ : increase decrease

No current so no I, B, $\Delta \Phi$, Bind or Iind!
ii) Switch just closed, current begins to flow

Direction of \vec{B} :
Change in Φ : increase decrease Direction of $\vec{B}_{\text {ind }}$:

Direction of $I_{\text {ind }}$ in G :

iii) Switch closed, current flowing steadily

iv) Switch just opened, current flow ending

by Jim Unger

"You say you spent five years at the North Pole?"

