Lenz's Law Lab Worksheet

Make diagrams for magnetic poles moving toward and away from each end of a coil for a total of eight (8) diagrams. On each draw

- * the DIRECTION OF \vec{B} on both poles of the magnet (labeled arrow),
- * the DIRECTION OF \vec{B}_{ind} on both ends of the coil (labeled arrow),
- + the WIRES SO they MATCH THOSE ON YOUR COIL,
- + the direction of induced current, \vec{I}_{ind} in the FRONT OF THE COIL (up or down)
- + the direction of \vec{I}_{ind} THROUGH THE GALVANOMETER
- + the ARROW IN THE GALVANOMETER as it appeared while the magnet was moving
- * circles on the right indicating the direction of the magnet's field, \vec{B} , in the coil due to the magnet and whether Φ is increasing or decreasing, the direction of the induced field, \vec{B}_{ind} , and the direction of \vec{I}_{ind} through the galvanometer.

The first one, with a south pole leaving the coil is shown. You must do the other seven.

Make diagrams for two coils and a knife switch. This is a total of four (4) diagrams. For each draw

- + the WIRES so they MATCH THOSE ON YOUR COILS (one is done for you),
- + the direction of the current, *I* in the FRONT OF THE SOURCE COIL
- + the **DIRECTION** OF \underline{B} in the source coil
- * the DIRECTION OF B ind in the detector coil,
- + the direction of induced current, \vec{I}_{ind} in the FRONT OF THE DETECTOR COIL
- + the direction of \overline{I}_{ind} THROUGH THE GALVANOMETER
- + the ARROW IN THE GALVANOMETER as it appeared while the magnet was moving
- * circles on the right indicating the direction of the flux, Φ in the coil due to the magnet and whether Φ is increasing or decreasing, the direction of the induced field, \vec{B}_{ind} , and the direction of \vec{I}_{ind} through the galvanometer.

The first one, with the switch open is shown. You must do the other three.

i) <u>Switch Open</u>

Direction of \vec{B} :	<u>~</u> 2¢	ero!
Change in Φ :	increase	decrease
Direction of \vec{B}_{ind} :	←	\rightarrow
Direction of I _{ind} in G:	←	\rightarrow

No current so no I, B, $\Delta \Phi$, Bind or Iind!

ii) Switch just closed, current begins to flow

iii) Switch closed, current flowing steadily

HERMAN®

by Jim Unger

"You say you spent five years at the North Pole?"