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A biometric device or biometric identification device is one that captures a physiological ‘image’ and uses that image to permit or deny access.  The access being controlled could be to a computer account or to a room.  The goal of these devices is to provide a more accurate and secure method for physical or logical access.  Everyone has a story or has heard one of someone forgetting his or her password and not being able to ‘log in’ to an account.  Almost everyone also has a story about losing a set of keys.  Biometric devices are meant to be an improvement over keys or passwords, since these latter devices can be lost or forgotten.  In theory, your biometric cannot be lost or stolen because it is specific to you.  Note that this is a different usage of the word biometrics.  Biometrics, as the statistics community commonly uses it, is a statistical or mathematical analysis of biological phenomena, e.g. the journal Biometrics.

[Place Figure 1 approximately here.]

There are a wide variety of biometrics that are being used.  A biometric is the physiological image that is used to determine identity.  A partial list (in no particular order) would include: fingerprints, hand geometry, finger geometry, hand vein patterns, ear geometry, face recognition, voice recognition, retinal scans, iris patterns, handwriting, keystroke dynamics and walking gait.  A more complete list can be found in, for example, Jain et al. (1998).  

The goal of a biometric device is to accurately determine whether or not you are who you say you are.  There are several factors that go into a ‘good’ biometric device.  Jain et al.(1998) suggest that a biometric should possess the following characteristics:  universality, uniqueness, permanence, collectability, performance, acceptability, and circumvention.  Universality means that as many people as possible should have the biometric in question.  Not every person has a right index finger, so that a biometric device based solely on this will not be universal.  Next, uniqueness implies that each person should have a different version of the biometric.  Fingerprints are generally thought to be unique.  Permanence is the condition that the biometric should not change over time.  A biometric device based on facial recognition is not ideal in this sense because people change their hair, they grow beards and they get wrinkles.  The ease with which a biometric can be captured is it’s collectability.  It might be possible to create a biometric device based upon your EEG, but it would be difficult to capture that information quickly and easily.  On the other hand, a fingerprint or an iris is fairly exposed and, therefore, easily collectible.  Performance measures how easy a particular biometric is to use and implement.  Acceptability is the degree to which the there is public acceptance of the biometric for identification purposes.  Fingerprints are a prime example of a biometric with high acceptability, since they have been used for centuries as a method of identification.  Finally, circumvention is the amount of work need to fool the system.  Signatures are notoriously easy to reproduce, whereas creating a copy of a fingerprint is far more difficult.  

[Place Figure 2 approximately here.]

The basic biometric system contains five subsystems: data collection, transmission, signal processing, a decision-making algorithm and a database (Wayman, 1998).  The data collection mechanism is a sensor of some kind.  For facial recognition, the data collection mechanism is a camera.  For keystroke dynamics, the data collection mechanism is a keyboard.  The information from the data collection mechanism is then transmitted to the signal-processing unit.  As part of the transmission, techniques such a signal compression may be implemented on the presented biometric.  The signal-processing unit then extracts the relevant details from the transmitted image and compares that image to one or more stored images, or templates, of the biometric from the database.  The decision-making phase then decides whether or not the presented biometric is ‘close enough’ to the stored template to be considered a match.  Several aspects of this process, particularly the decision-making step, have a statistical flavor.  In this paper, I’ll focus on the statistical aspects of the performance of the decision making process.

One of the most important aspects of any biometric device is its matching performance.  The matching performance is usually measured in terms of false accept and false reject rates.  (Within the biometrics industry, these are sometimes referred to as the false match and false non-match rates, respectively, (U.K. Biometrics Working Group, 2000)).  I will refer to users that are enrolled in the database as genuine users and I will refer to users who are not enrolled in the database as imposters.  Thus, the matching performance describes how well the system allows access to genuine users and denies access to imposters.

When an individual presents their biometric, the ‘image’ is processed and matched against one or more stored templates from the database.  The number of comparisons depends upon the mode that the device uses.  There are two basic modes of operation.  The first is verification or one-to-one mode.  In this mode, some identifier such as a name or an ID number is given to the system and it verifies that your biometric matches the biometrics stored under your name.  The second mode of operation is identification or one-to-many mode.  Under this scenario, the biometric system compares the presented biometric to the entire database looking for a match.  Though these systems have very different methodologies, their performance is measured in the same way.

In either of these modes, the result of the decision-making algorithm is a match score, T.  A comparison is then made between the match score, T, and a threshold, .   If T>, then system decides that a match has been made and permits access.  This is called an accept.  If T (  then the system decides that a match has not been made and denies access.  This is generally referred to as a reject.  The statistical aspects of biometric device performance focus on the rate at which errors are made in this process.  These errors are akin to the Type I and Type II errors that are encountered in hypothesis testing.  A Type I error is a false reject and a Type II error is a false accept.

To make this discussion more precise, consider the population of match scores all attempts by genuine users and let fgen(x) represent the density of this distribution.  Similarly, consider the population of match scores for all attempts by imposters and let himp(y) be the density for this distribution.  Then the false rejection rate (FRR) is the probability that T is greater than  given that T comes from the distribution of genuine user scores.  The false acceptance rate (FAR) is the probability that T is less than  given that the score T comes from the distribution of imposter’s scores.  Symbolically,
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The threshold, , can be set so that we have some control over the values that the FAR and FRR will take.  However, note that as  increases that the FRR will decrease and the FAR will increase. Likewise, as  decreases the FRR will increase and the FAR will decrease.  In a practical setting, we are often interested in estimating the FAR and FRR for a particular biometric device.  Given  and a sample from both genuine users and imposters we can create estimates for the FRR and FAR, in the following way:  
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 is an estimator of the FAR, #Genuine is the total number of genuine user scores and #Imposter is the total number of imposter scores.  

As mentioned above, for any given , we can estimate the FAR and FRR.  By varying , we can get different values of FAR and FRR.  By plotting the different values that the FAR and FRR take, this function is called a Receiver Operating Characteristic (ROC) curve.  ROC curves are frequently used in engineering applications.  The ROC curve is a concise graphical summary of the performance of the biometric device.  Figure 1 gives an example of an ROC curve.  Note that the ROC curve must always begin and end with the points (0,1) and (1,0).  This can be seen by letting= ( and = - (, respectively.  One measure of overall performance that is commonly used for biometric devices is the equal error rate or EER.  This is the value that the ROC curve takes when it passes through a line of slope 1.  That is, it is the point where the FAR is equal to the FRR.  The EER is a single measure to assess the overall performance of a biometric device.  Biometric devices are rarely set at = EER.  is chosen based upon the conditions in which the device will be used.  If security is the most important consideration, then  will be chosen to give a low FAR.  If the number of people getting moving through the system is an important consideration, then  may be set to give a low FRR.

[Place Figure 3 approximately here.]


To statistically assess the performance of a biometric device, we would like to be able to create confidence intervals for FRR and FAR.  To do this, we need to describe the usual techniques for testing a biometric device.  For simplicity suppose that we are estimating the FRR.  Estimation of the FAR would follow by a similar process.  Traditionally, what is done is that M individuals are tested for each of ni attempts where i= 1, 2, 3, …, M.  The number of rejects from the 
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attempts is then recorded.  If we let X be the number of false rejects from a fixed number of attempts, it would seem that X might be a Binomial random variable.  However, consider the conditions necessary for a Binomial experiment.

i. There must be a fixed number of trials, n.

ii. Each trial must result in one of two possible outcomes.

iii. Probability of success, p, must be constant for all trials.

iv. Each trial must be statistically independent of the others.

If we let n=ni, then condition i is met.  Conditions ii is clearly met since the biometric device decides to either accept or to reject.  It is known that each individual has their own probability of success and that these probabilities are different from individual to individual.  Consequently, if M>1, condition iii is not met.  However, if M=1 and the trials are independent (condition iv) then X is a Binomial random variable.  Recall that this means that we would only be testing one person.  We could also model X as a Binomial random variable if ni=1.  Thus, the conditions under which the Binomial distribution are appropriate are severely limiting.  Testing only a single person is unreasonable and testing each person once is quite expensive and inefficient.


The biometrics community recognizes that the Binomial distribution cannot be used to create confidence intervals for the FAR and the FRR except under the limiting conditions mentioned above (U.K. Biometrics Working Group, 2000).  At present there is no accepted methodology for assessing the variability in estimated FAR’s and FRR’s.  One alternative to the Binomial that has been proposed for assessing biometric performance is the Beta-binomial distribution (Schuckers, 2001).    For the Beta-binomial, assume that each individual, i, has it’s own probability of an error, pi.  Let Xi be the number of failures from ni attempts.  Further, let pi come from a population of probabilities that can be described by a Beta distribution.  Then we have the following model:
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.  This is a hierarchical model.  Our interest is now on , the mean rate for the population.  We can treat the pi’s as nuisance parameters and integrate them out.  
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Numerical methods, such as maximum likelihood estimation, are used to estimate  and to estimate the variability in .  See, for example, Silvey (1975) for a discussion of maximum likelihood methods.  These methods then allow for the creation of a confidence interval for .  


The Beta distribution is a very flexible family of distributions for modeling the population of probabilities.  Several authors, including Johnson and Kotz (1970) have noted this.  The Beta distribution works well if the population of pi’s is unimodal, has a J-shape or a reverse J-shape.  One of the difficulties in using the Beta-binomial distribution is that there is a body of literature that says that the population of pi’s, particularly for FRR, may be bimodal.  For FRR, the two modes are made up of subpopulations known as ‘goats’ and ‘sheep’.  Sheep are those individuals that have fairly low variability in their biometrics; whereas goats have a much higher level of variability in their biometrics.  Hence, it seems likely that these two groups would constitute separate populations with different mean rates of a false reject. These populations were first acknowledged in a paper on speaker recognition that is affectionately called “Doddington’s Zoo” (Doddington et al., 1998).  Under these conditions, the Beta-binomial is not an appropriate distribution.  One possibility is to model the population as a mixture of two Beta-binomial distributions (Everitt and Hand, 1981).


Biometrics is a new and emerging field.  The field is growing and expanding rapidly.  As a consequence, there are many statistical questions that need to be resolved including the issues regarding assessment of the variability in the performance of a biometric device that I have discussed here.  One of the most pressing challenges is the development of a methodology for determining sample size.  Biometric testers are very interested in knowing how large of a sample they need to take.  This problem is difficult in that it involves two sample sizes: M, the number of individuals to be sampled and, ni, the number of times that each individual should be tested. 
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Figure 1.

A fingerprint image.
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Figure 2.

A fingerprint-based biometrics identification device.

[image: image17.png]




Figure 3.

Example of a Receiver Operating Characteristic Curve


(0,1)





(1,0)





(0,0)





FRR





FAR








Page 13 of 13

_1060689656.unknown

_1060751889.unknown

_1060753707.unknown

_1060756815.unknown

_1061192498.unknown

_1060756803.unknown

_1060753447.unknown

_1060751053.unknown

_1060751113.unknown

_1060751163.unknown

_1060689664.unknown

_1060688732.unknown

_1060689553.unknown

_1060689564.unknown

_1060688692.unknown

