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Cops & Robbers Games on Graphs

Pursuit games on graphs

o Games are played on G: a connected, undirected, simple
graph on n vertices.

o Two players, a pursuer (cop) and an evader (robber) move
vertex to vertex on G.

o Capture occurs when cop and robber occupy same vertex at
same time.

o The cop's goal is to capture the robber in the minimal
possible number of steps.

o The robber's goal is to evade capture as long as possible.

* A move consists of a step by the cop followed by a step by
the robber (like chess).
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Cops & Robbers Games on Graphs

Original Cops & Robbers game

¢ Introduced by Nowakowski & Winkler [3] and (independently)
Quilliot [4].

o Cop and robber move alternately from vertex to adjacent
vertex—or stay put—uwith full information about each other’s
positions.

» Graphs on which a cop can win (i.e. capture) in finite time are
called cop-win.

o Game takes no more than n—4 moves on cop-win graphs with
n>17 (see[1, 2]).

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

AN

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that

leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov



Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

o Example:

Hunter Vs. Mole Natasha Komarov
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Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.
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Cops & Robbers Games on Graphs

Original game: what graphs are cop-win?

o Definition. A graph is dismantlable if it has a sequence of
corners (a.k.a. vertices dominated by another vertex) that
leads to the trivial graph.

A graph is cop-win if and only if it is dismantlable.

Bonus: Dismantlable graphs turn out to be important in
unexpected areas: e.g. statistical physics.
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Hunter vs. Mole

Game set-up

o Hunter: not constrained by edges but plays in the dark.

o Mole: constrained by edges and must move, but can see
hunter.

o Players move simultaneously.

o On what graphs can hunter guarantee capture of mole in
bounded time (call these hunter-win)? (Equivalently: hunter
plays against genius, prescient mole who always makes the
moves guaranteed to maximize capture time.)

A graph is hunter-win if and only if it is a lobster.
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A lobster is a tree containing a path P such that all vertices are
within distance 2 of P.

Hunter Vs. Mole Natasha Komarov



Hunter vs. Mole

Characterization & Optimal Strategy

Definition
A lobster is a tree containing a path P such that all vertices are
within distance 2 of P.

LT

A lobster. Not a lobster.
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Define an odd (resp. even) mole to be a mole who starts at an
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Characterization & Optimal Strategy

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 4th step:

Orange vertex = hunter's position
Purple vertex = even mole's possible positions
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Characterization & Optimal Strategy

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 15" step:

Orange vertex = hunter's position
Purple vertex = odd mole's possible positions
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Hunter vs. Mole

Characterization & Optimal Strategy

Lemma

Lobsters are hunter-win.

Proof by picture.

This is an optimal strategy for the hunter, by the way—even
though she only went from vertex to adjacent vertex!
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Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't
contain the three-legged spider:
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o G contains a mole-win subgraph.
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Example: the cycle.
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Mole-win graphs
How can we prove that a graph is mole-win?

Finite state diagrams.
Example: the three-legged spider.

+ +|  all choices

+ +
0
(‘)‘- 0, a1, a3, by,
+ b3, G

all choicss
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Conclusion

A graph is hunter-win if and only if it is a lobster.
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Any graph with a loop at two or more vertices is mole-win.

Any path with a loop on both endpoints has the following finite
state diagram:

I + 4+ ... + 4+ | (any vertex choice)
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Generalizations & Variations

Variation: A less restricted mole

Any graph with a loop at two or more vertices is mole-win.

Any path with a loop on both endpoints has the following finite
state diagram:

I + 4+ ... + 4+ | (any vertex choice)

And any graph with a loop at two or more vertices contains such a
path as a subgraph. O
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o Question: What if the mole is allowed to stay put at exactly
one vertex?

o Answer: This is (usually) still bad news.

Lemma

A graph containing exactly one loop is hunter-win if and only if it
is a lobster and the loop is close to an endpoint of the central path.
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Variation: A less restricted mole

Lemma

A graph containing exactly one loop is hunter-win if and only if it
is a lobster and the loop is close to an endpoint of the central path.

In particular, lobsters with a single loop are mole-win if and only if
they contain one of the following graphs as a subgraph:
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Generalizations & Variations

Variation: A less restricted mole

Lemma

A graph containing exactly one loop is hunter-win if and only if it
is a lobster and the loop is close to an endpoint of the central path.

In particular, lobsters with a single loop are mole-win if and only if
they contain one of the following graphs as a subgraph:

G1 o—o—o&o—o—o
G2 H—o—(?—o—o—c
G3
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Generalizations & Variations

Variation: More hunters

¢ Question: Can we characterize all 2-hunter-win graphs? This
is strangely difficult!

o Underlying issue: subdividing an edge of a mole-win graph
can now lead to a 2-hunter-win graph.

Example:

Mole-win 2-hunter-win
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Generalizations & Variations

Variation: More hunters

¢ Question: Can we characterize all 2-hunter-win graphs? This
is strangely difficult!

o Underlying issue: subdividing an edge of a mole-win graph
can now lead to a 2-hunter-win graph.

Example:

Mole-win 2-hunter-win

o This is current undergraduate work with Zachary Greenberg
(senior math major, CMU).
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Thank you!
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