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7.5 Taking-and-Breaking Games

There are many natural variations on nim obtained by modifying the legal

moves. For example, sometimes a player, in addition to taking counters, might

also be permitted to split the remaining heap into two (or sometimes more)

heaps. These rule variants yield a rich collection of Taking-and-Breaking games

that are discussed in WW [BCG01].

After nim, Taking-and-Breaking games are among the earliest and most

studied impartial games; however, by no means is everything known. To

the contrary, much of the field remains wide open. Values in games such as

grundy’s game (choose a heap and split it into two different sized heaps) and

Conway’s couples are forever (choose a heap and split it but heaps of size

2 are not allowed to be split) have been computed up to heaps of size 11× 109

and 5 × 107, respectively, yet there is no complete analysis for these games.

In Taking-and-Breaking variants, the legal moves may vary with the size of

the heap and the history of the game. For example, the legal moves might be, “a

player must take at least one-quarter of the heap and no more than one-half,”

or “a player must take between n/2 and n+3, where n is the number taken on

the last move.” For an example, see Problem 11. Games whose allowed moves

depend on the history of the game are typically more difficult to analyze, but

when the legal moves are independent of the history (and of moves in other

heaps), then the game is a disjunctive sum and we only need analyze games

that have a single heap!

Definition 7.28. For a given Taking-and-Breaking game G, let G(n) be the nim-

value of the game played with a heap of size n. The nim-sequence for the game

is G(0), G(1), G(2), . . ..

In order to automate the process for finding (and proving) the nim-sequences

of selected Taking-and-Breaking games, we need to address two main questions:

1. What types of regularities occur in nim-sequences?

2. When do we know that some regularity observed in a nim-sequence will

repeat for eternity?

There are three types of regularities that have been observed in many nim-

sequences to which we can answer the second question. These are listed in the

next definition but we only consider two of the three, those that are periodic

and arithmetic periodic, in this book. The reader interested in split-periodicity

should read [HN03, HN04].

Definition 7.29. A nim-sequence is

• periodic if there is some l ≥ 0 and p > 0 so that G(n + p) = G(n) for all

n ≥ l;
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• arithmetic periodic if there is some l ≥ 0, p > 0, and s > 0 so that

G(n + p) = G(n) + s for all n ≥ l;3 and

• sapp regular (or split arithmetic periodic/periodic) if there exist integers

l ≥ 0, s > 0, p > 0, and a set S ⊆ {0, 1, 2, . . . , p − 1} such that for all

n ≥ l,

G(n + p) =

{

G(n) if (n mod p) ∈ S,

G(n) + s if (n mod p) 6∈ S.

The subsequence G(0),G(1), . . . ,G(l−1) is called the pre-period and its elements

are the exceptional values. When l and p are chosen to be as small as possible,

subject to meeting the conditions of the definition, we say that l is the pre-period

length and p is the period length, while s is the saltus. If there is no pre-period

the nim-sequence is called purely periodic, purely arithmetic periodic, purely

sapp regular, respectively.

Exercise 7.30. Match each sequence on the left one-to-one to a category on the

right:

1231451671 . . . periodic

1123123123 . . . purely periodic

1122334455 . . . sapp regular

0123252729 . . . arithmetic periodic

0120120120 . . . purely sapp regular

1112233445 . . . purely arithmetic periodic

In each case, identify the period and (when non-zero) the saltus and pre-period.

7.6 Subtraction Games

Definition 7.31. A subtraction game denoted subtraction(S), is played with

heaps of counters and a set S of positive integers. A move is to choose a heap

and remove any number of counters provided that number is in S.

• If S = {a1, a2, . . . , ak} is finite, we have a finite subtraction game, which

we denote subtraction(a1, a2, . . . , ak).

• If, on the other hand, S = {1, 2, 3, . . .}\{a1, a2, . . . , ak} consists of all the

positive integers except a finite set, we have an all-but subtraction game,

denoted allbut(a1, a2, . . . , ak).

In Example 7.25, subtraction(1, 2, 4) was shown to be periodic. On the

other hand, allbut() is another name for nim and is arithmetic periodic with

saltus 1.
3Reminder: + means normal, not nimber, addition!



146 Chapter 7. Impartial Games

Finite subtraction games

The next table gives the first 15 values of the nim-sequence for several subtrac-

tion games subtraction(S).

S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

{1,2,3} 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
{2,3,4} 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1
{3,4,5} 0 0 0 1 1 1 2 2 0 0 0 1 1 1 2

{3,4,6,10} 0 0 0 1 1 1 2 2 2 0 3 3 1 4 0

It is not surprising that the nim-sequence for subtraction(1, 2, 3) is purely

periodic with values 0̇123̇. (Note: we use dots to indicate the first and last

values in the period.) The nim-sequence for subtraction(2, 3, 4) is 0̇01122̇

and 0̇0011122̇ for subtraction(3, 4, 5). The pattern is not yet evident for

subtraction(3, 4, 6, 10), but if we pushed on we would eventually find that

the nim-sequence is 000111222033140̇0201312̇.

Calculating nim-sequences with a Grundy scale

The calculation of nim-sequences for subtraction games can be done by a com-

puter (CGSuite, Maple or Mathematica, for example, or any spreadsheet pro-

gram) but there is an easy, hand technique as well. Use two pieces of graph

paper to construct what is known as a Grundy scale. Here, we will work with

the example subtraction(3, 4, 6, 10).

To begin, take two sheets of lined or graph paper. On each sheet make

a scale, with the numbers marked in opposite directions. One of the scales is

marked with △s to indicate the positions of numbers in the subtraction set;

you can put a N to indicate 0. The other sheet will be used to record the

nim-values:

0 1 2 3 4 5 6 7

01234567891011

N△△△△

As you fill in nim-values on the top scale, slide the bottom scale to the right.

Shown below is the calculation G(9); take the mex of the positions marked

by arrows. In this case, mex(1, 1, 2) = 0, so we will fill in a 0 for G(9), now

indicated by the N:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 1 1 1 2 2 2 0

01234567891011

N△△△△

Similarly, G(13) = mex(1, 2, 0, 3) = 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 1 1 1 2 2 2 0 3 3 1 4

01234567891011

N△△△△

Exercise 7.32. Make a photocopy of the last Grundy scale, make a cut to sep-

arate the bottom and top portions, and use it to calculate more of the nim-

sequence of subtraction(3, 4, 6, 10). For more practice, try using Grundy

scales for the examples in problem 2 until you are comfortable.

Periodicity of finite subtraction games

After working out a few finite subtraction games, it will come as no surprise

that their nim-sequences are always periodic.

Theorem 7.33. The nim-sequences of finite subtraction games are periodic.

Proof: Consider the finite subtraction game subtraction(a1, a2, . . . , ak) and

its nim-sequence. From any position there are at most k legal moves. So, using

Observation 7.22, G(n) ≤ k for all n.

Define a = max{ai}. Since G(n) ≤ k for all n there are only finitely many

possible blocks of a consecutive values that can arise in the nim-sequence. So

we can find positive integers q and r with a ≤ q < r such that the a values in

the nim-sequence immediately preceding q are the same as those immediately

preceding r. Then G(q) = G(r) since

G(q) = mex{G(q − ai) | 1 ≤ i ≤ k} = mex{G(r − ai) | 1 ≤ i ≤ k} = G(r).

In fact, for such q and r and all t ≥ 0, G(q + t) = G(r + t). This is easily shown

by induction — we have just seen the base case, and the inductive step is really

just an instance of the base case translated t steps forwards. Now set l = q and

p = r − q and we see that the above says that for all n ≥ l, G(n + p) = G(n);

that is, that the nim-sequence is periodic.
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This proof shows that the pre-period and period lengths are at most (k+1)a.

However, this is generally a wild overestimate, and using the following corollary

the values of the period and pre-period lengths can usually be determined by

computer:

Corollary 7.34. Let G = subtraction(a1, a2, . . . , ak) and let a = max{ai}. If

l and p are positive integers such that G(n) = G(n + p) for l ≤ n < l + a, then

the nim-sequence for G is periodic with period length p and pre-period length l.

Proof: See Problem 5.

That is, given conjectured values of l and p, it suffices to inspect the values

of G(n) for n ∈ {l, l + 1, . . . , l + p + a− 1} to confirm the periodicity! It is then

rote for a computer to identify the smallest pre-period and period given by the

corollary.

Applying the corollary to the games in Table 7.6 we see that for:

subtraction(1, 2, 3) we have l = 0, p = 4 and a = 3, and these values can be

confirmed by inspection of G(n) for n ∈ {0, . . . , 6};

subtraction(2, 3, 4) l = 0, p = 6 and a = 4, inspect G(n) for n ∈ {0, . . . , 9};

subtraction(3, 4, 5) l = 0, p = 8 and a = 5, inspect G(n), n ∈ {0, . . . , 12};
and

subtraction(3, 4, 6, 10) l = 14, p = 7 and a = 10, inspect G(n), n ∈
{14, . . . , 30}.

Exercise 7.35. Use a Grundy scale to compute values of subtraction(2, 4, 7)

until you have enough to apply Corollary 7.34. For more practice, see

Problem 2.

Two of the main questions, which still attract researchers, are:

1. As a function of the ai, how long can the period of

subtraction(a1, a2, . . . , ak) be?

2. Find general forms for the nim-sequence for subtraction(a1, a2, a3).

Many games with different subtraction sets are actually the same in the

sense that they have the same nim-sequence. For example, in the game

subtraction(1), the first player wins precisely when there is an odd number

of counters in the heap. The odd-sized heaps only have moves to even-sized

heaps; even-sized heaps only have moves to odd-sized heaps and the end posi-

tion consist of heaps of size 0; that is, even. Therefore, a heap with n-counters

is in N if n is odd, otherwise it is in P . Adjoining any odd numbers to the

subtraction set does not change this argument and it is easy to show that the

nim-sequence of any game subtraction(1, odds) is 0̇1̇0101. A more general

version of this analysis is sufficient to prove:
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Theorem 7.36. Let G = subtraction(a1, a2, . . . , ak) be purely periodic with

period p. Let H = subtraction(a1, a2, . . . , ak, a1 + mp) for m ≥ 0, then G

and H have the same nim-sequence.

Proof: See Problem 6.

All-but-finite subtraction games

The next table gives the first 15 values of the nim-sequence for allbut(S) for

several sets S:

S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

{1,2,3} 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3
{2,3,4} 0 1 0 1 0 1 2 3 2 3 2 3 4 5 4

{1,2,8,9,10} 0 0 0 1 1 1 2 2 2 3 0 3 4 1 4

Grundy scales can still be used for the all-but subtraction games. This

time, the small arrows mark the heaps that are not options.

Exercise 7.37. Use a Grundy scale to find the first 20 terms in the nim-sequence

of allbut(1, 3, 4).

These values certainly do not look periodic, for G(n) appears to steadily

increase with n, as confirmed by the following lemma:

Lemma 7.38. Let G = allbut(a1, a2, . . . , ak) and a = max{ai}. Then

G(n + t) > G(n) for all t > a.

Proof: Since any option from n is also an option from n + t, G(n + t) ≥ G(n).

Additionally, n is an option from n + t, so G(n) occurs as the nim-value of an

option from n + t and thus we do not have equality.

However, as we will see, all-but subtraction games are arithmetic periodic.

From the table above, we might conjecture the following (we denote the saltus

information in parentheses with a + sign):

S nim-sequence

{1,2,3} 0̇000̇(+1)

{2,3,4} 0̇10101̇(+2)

{1,2,8,9,10} 000111222̇30̇(+1)

Proving a nim-sequence is arithmetic periodic is typically more difficult

than proving periodicity. Nonetheless, we can parallel the work done for finite

subtraction games, proving first that allbut subtraction games are arithmetic

periodic, and then identifying how one (a person or a computer) can automat-

ically confirm the arithmetic periodicity.
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Theorem 7.39. Let G = allbut(a1, a2, . . . , ak). Then the nim-sequence for G

is arithmetic periodic.

Proof: Lemmas 7.41 and 7.43, motivated and then proved below, yield the

theorem.

The proof of this theorem is more technical than that of Theorem 7.33,

but in broad strokes is similar. In the proof of Theorem 7.33, we first argued

that nim-values cannot get too large, and that therefore some sufficiently long

sequence of nimbers must repeat. Once a sufficiently long sequence appears

identically twice, an induction argument establishes that those two sequences

remain in lock-step ad infinitum.

With arithmetic periodicity, the repetition we seek is in the shape of a

sequence rather than its values as shown in Figure 7.1 on page 152. As you

read through the proofs, keep in mind that two subsequences of nim-values, call

them (G(n0), . . . ,G(n0 + c)) and (G(n′
0), . . . ,G(n′

0) + c) have the same shape if

1. the two subsequences differ by a constant:

G(n′
0) − G(n0) = G(n′

0 + 1) − G(n0 + 1) = · · · = G(n′
0 + c) − G(n0 + c),

2. or equivalently, both subsequences move up and down the same way: for

all 0 ≤ i < c,

G(n0 + i + 1) − G(n0 + i) = G(n′
0 + i + 1) − G(n′

0 + i).

It will turn out that the base case for our inductive proof will require

a repetition of length about 2a, where a = max{ai}. We show that such a

repetition exists in the next two lemmas.

Lemma 7.40. Let G = allbut(a1, a2, . . . , ak), and define a = max{ai}. For all

n ≥ a,

k − a ≤ G(n + 1) − G(n) ≤ a − k + 1.

Proof: Fix n > a and let X ⊆ {G(0),G(1),G(2), . . . ,G(n − 1)} be the nim-

values of the options of n.4 Now, since G(n) is the mex of X , we know that

{0, 1, 2, . . . ,G(n) − 1} ⊆ X . Further, play in G = allbut(a1, a2, . . . , ak) pro-

hibits moves to k of the top a heap sizes. Hence, one of {G(0), . . . ,G(n−a−1)},
say G(m), must be at least G(n)− 1− (a− k), for only a− k of the terms from

X can appear among {G(n− a), . . . ,G(n)− 1}. Further, m and all the options

from m are also options from n + 1. So we have

G(n + 1) > G(m), and so

G(n + 1) ≥ G(n) − (a − k).

4In other words, X = {G(n − α) | α 6∈ {a1, . . . , ak}}.
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Similarly, for the second inequality, one of {G(0), . . . ,G(n − a − 1)} is at

least G(n + 1) − 2 − (a − k), and it and its options are options of n. So,

G(n) ≥ G(n + 1) − (a − k) − 1.

Lemma 7.41. Let G = allbut(a1, a2, . . . , ak) and a = max{ai}. There exist

n0, n′
0, s, and p = n′

0 − n0 > 0 such that G(n + p) − G(n) = s for n0 ≤ n ≤
n0 + 2a.

Proof: By Lemma 7.40, for all n, G(n + 1) − G(n) must lie between k − a and

a− k + 1. But there are only 2(a− k) + 2 values in that range. Hence, setting

c = 2(a − k) + 2, there are at most c2a possible sequences of the form

( G(n + 1) − G(n),
G(n + 2) − G(n + 1),

. . . ,
G(n + 2a) − G(n + 2a − 1) )

(7.1)

and so eventually, for two values n = n0 and n = n′
0, the two corresponding

sequences are identical. The lemma follows.

Exercise 7.42. Complete the algebra to confirm, “The lemma follows.” In par-

ticular, given the two identical sequences satisfying (7.1), one with n′
0, and one

with n0, you need to define p and explain why G(n + p) − G(n) is a constant

(call it s = G(n′
0) − G(n0)) for n0 ≤ n ≤ n0 + 2a. (The matching shapes in

Figure 7.1 provide some intuition.)

The next lemma completes the inductive step of the proof of the theorem

showing that once two sufficiently long sequences have the same shape, they

are fated to continue in lock step.

Lemma 7.43. Let G = allbut(a1, a2, . . . , ak) and a = max{ai} and suppose

G(n + p) − G(n) = s for n0 ≤ n ≤ n0 + 2a. Then G(n + p) − G(n) = s for all

n ≥ n0.

In particular, G(n) has pre-period length l = n0, period p, and saltus s, and

one can identify and confirm the period and saltus by only inspecting the first

l + 2a + p + 1 values; i.e., G(n) for 0 ≤ n ≤ l + 2a + p.

Proof: Using induction, it suffices to prove G(n + p) − G(n) = s for n = n0 +

2a + 1. Define the following quantities as shown in Figure 7.1: n′
0 = n0 + p,

n1 = n0 + a, n2 = n0 + 2a, n′
1 = n′

0 + a, and n′
2 = n′

0 + 2a.

As we compute G(n′) = G(n+p) as the mex of the nim-values of its options,

by Lemma 7.38, G(n′) exceeds all G(m) for m < n′ − a − 1 = n′
1. And we
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Figure 7.1. A diagram sketching the proof of arithmetic periodicity in allbut subtraction
games. For the game allbut(a1, . . . , ak), a = max{ai}, s is the proposed saltus, p is
the proposed period. We first find two sufficiently long sequences of nim-values with the
same shape (but translated upward), and inductively prove that those sequences remain
in lock-step.

know G(n′) > G(n′
1) in any event, so we can safely ignore G(m) for m < n′

0. In

other words, G(n′) is the minimum excluded value from {G(n′
0), . . . ,G(n′

2)} that

exceeds G(n′
1). Since the assignment of G(n′) is unaffected by linear translation

of those nim-values, G(n′) − G(n) = s.

This last lemma gives an automated method for testing when an all-but

subtraction game nim-sequence has become arithmetic periodic. Although Fig-

ure 7.1 shows the two subsequences non-overlapping (suggesting that p > 2a),

the proof is unaffected by overlap.

Exercise 7.44. Apply Lemma 7.43 to find the period length p and the saltus s of

the game from Exercise 7.37. In particular, how many values of G(n) need com-

puting to confirm the period and saltus? (Hint: The game is purely arithmetic

periodic with period between 10 and 15.)
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Exercise 7.45. We asserted at the start of this section that the nim-sequence

for allbut(1, 2, 8, 9, 10) is given by 000111222̇30̇(+1). To apply Lemma 7.43,

which values of G(n) need be confirmed to be confident of the nim-sequence?

As was seen in the table on page 149, some allbut subtraction games have

pre-periods. If you do Problems 12, 13, and 14. then you will have shown that

the nim-values of allbut games where s has cardinality 1 and 2 are purely

arithmetic-periodic.

Frequently, the allbut subtraction set can be reduced. While most such

reductions remain specific to individual games, we do have one general reduc-

tion theorem.

Theorem 7.46. Let a1 < a2 < · · · < ak be positive integers, and let b > 2ak.

Then, the nim-sequences of allbut(a1, a2, . . . , ak) and allbut(a1, a2, . . . , ak, b)

are equal.

Proof: Let G(n) denote the nim-sequence of allbut(a1, a2, . . . , ak) and G′(n)

that of allbut(a1, a2, . . . , ak, b). Certainly, G(n) = G′(n) for n < b since

the options in the two games are identical to that point. Suppose induc-

tively that the two nim-sequences agree through n − 1, and consider G(n) and

G′(n). Since the options of allbut(a1, a2, . . . , ak, b) are a subset of those of

allbut(a1, a2, . . . , ak), the only possible way to have G(n) 6= G′(n) would be

if G′(n) = G(n − b), since the latter is the only possible value that does not

occur among the options of allbut(a1, a2, . . . , ak, b) but does occur among the

options of allbut(a1, a2, . . . , ak). In order for this to be true it would also be

the case that no option of n in allbut(a1, a2, . . . , ak, b) had value G(n − b).

However, consider m = n − b + ak. By the inductive hypothesis G(m) =

G′(m). Moreover, all values smaller than n − b are options from a heap of

size m in allbut(a1, a2, . . . , ak), so G(m) ≥ G(n − b). As m is an option

of n in allbut(a1, a2, . . . , ak, b), in order to avoid a contradiction we would

require that G(m) > G(n − b). But then, m would have an option m′ in

allbut(a1, a2, . . . , ak) with G(m′) = G(n − b). Since m′ 6= n − b and m′ <

n−ak, m′ is also an option of n in allbut(a1, a2, . . . , ak, b). This contradiction

establishes the desired result.

For more on all-but-finite subtraction games see [Sieg06].

Kayles and kin

kayles is played with a row of pins standing in a row. The players throw balls

at the pins. The balls are only wide enough to knock down one or two adjacent

pins.

† † † † † † † † † †
Above is a game in progress. Would you like to take over for the next player?
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kayles can also be thought of as a game played with heaps of counters and

a player is allowed to take one or two counters and possibly split the remaining

heap into two. kayles is clearly a Taking-and-Breaking game but maybe it is

too hard right now. We will work up to it with a couple of simpler variants.

First, suppose we play a game where a player is only allowed to split-

the-heap into two non-empty heaps; no taking. We saw in Example 1.10 of

Chapter 1, that this is she loves me she loves me not disguised. That is,

G(n) =







0 if n = 0,

0 if n > 0 is odd,

1 if n > 0 is even.

In particular, moves from an even heap are to even + even = ∗ + ∗ = 0 or

odd + odd = 0, while moves from an odd heap are to even + odd = ∗ + 0 = ∗.
The version where you are allowed to split-or -take-1-and-must-split (into

non-empty heaps) needs a bit more care. For a heap of n, the splitting move

gives the options n − i and i for i = 1, 2, . . . , n − 1 and the take-1-and-split

move leaves the positions n− 1− j and j, j = 1, 2, . . . , n− 2. To find the value

of the game, we need to find the mex of

{G(i) ⊕ G(n − i) | i = 1, 2, . . . , n − 1}
∪ {G(j) ⊕ G(n − 1 − j) | j = 1, 2, . . . , n − 2}.

The first few values are G(0) = 0, G(1) = 0, G(2) = mex{G(1) + G(1)} = 1,

G(3) = mex{G(2) ⊕ G(1)} ∪ {G(1) ⊕ G(1)} = 2. This becomes tedious very

quickly and a machine will be very useful. If one is not available then a Grundy

scale can help. This time both pieces of paper have the nim-values, one from

left-to-right as before, the other has them from right-to-left. However, we have

to use them twice and record the intermediate values. The next diagram shows

the calculation of G(9). First, line up the scales for the split move, 8 + 1, 7 + 2,

. . ., 1 + 8. Clearly we only need go to 4 + 5 since we repeat the calculations in

reverse. Nim-sum the pairs of numbers and record:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 1 4 3 2

01234567891011

001231432

This gives {2, 2, 6, 2, 2, 6, 2, 2} as the set of values for these options. Now line

them up for the take-one-and-split move.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 1 4 3 2

01234567891011

001231432

This gives the set {3, 5, 3, 0, 3, 5, 3} for these options. The least non-negative

number that does not appear in either set is 1, so record G(9) = 1 on both

papers:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 1 4 3 2 1

01234567891011

0012314321

Exercise 7.47. Continue using the Grundy scale to compute five more nim-

values of the last game where you are allowed to split-or -split-and-take-one-

but-always-leave-two-heaps.

For a fixed (finite) set S of positive integers, we can define the variant

splittles(S) where a player is allowed to take away s, for some s ∈ S, from a

heap of size at least s and possibly split the remaining heap.

In particular, kayles is just splittles(1, 2).

What sort of regularities could the nim-sequences of splittles(S) have?

In the few examples so far, the nim-values do not grow very quickly at all

suggesting that the nim-sequences are periodic but Nobody Knows. All we

know is that the nim-sequences are not arithmetic periodic [Aus76, BCG01]. It

is believed that splittles(S) is periodic when S is finite, and for periodicity

we do have an automatic check.

Theorem 7.48. Fix splittles(S) with m = max S. If there exists integers,

l ≥ 0 and p > 0 such that G(n + p) = G(n) for l ≤ n ≤ 2l + 2p + s, then

G(n + p) = G(n) for all n ≥ l. That is, the period persists forever.

Proof: See Problem 15.

Problems

1. Find the nim-sequences for subtraction(S), where |S| = 2 and S ⊆
{1, 2, 3, 4}.
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2. Use a Grundy scale and Corollary 7.34 to compute the nim-sequences of

(a) subtraction(2, 3, 5);

(b) subtraction(3, 5, 8);

(c) subtraction(1, 3, 4, 7, 8).

3. Find the period for

(a) allbut(1, 2, 3);

(b) allbut(5, 6, 7);

(c) allbut(3, 4, 6, 10).

4. A game is played like kayles, only you cannot bowl the end of a row

of pins. In nim language, you can take one or two counters from a heap

and you must split that heap into two non-empty heaps. Using a Grundy

scale, calculate the first 15 nim-values for this game.

5. Prove Corollary 7.34 on page 148.

6. Prove Theorem 7.36 on page 149.

7. (This is a generalization of nim.) polynim is played on polynomials with

non-negative coefficients. A move is to choose a single polynomial and

reduce one coefficient and arbitrarily change or leave alone the coefficients

on the smaller powers in this polynomial — 3x2 +15x+3 can be reduced

to 0x2 + 19156x + 2345678 = 19156x + 2345678. Analyze polynim. In

particular, identify a strategy for determining when a position is a P-

position analogous to Theorem 7.12.

8. Find the nim-sequences for subtraction(1, 2q) for q = 1, 2, 3. Find the

form of the nim-sequence of subtraction(1, 2q) for arbitrary q.

9. Show that the nim-sequence for subtraction(q, q+1, q+2) is 0̇0q−11q22̇

if q > 1. (As usual, xb is x repeated b times.)

10. Analyze subtraction(1, 2, 4, 8, 16, . . . , 2i, . . .).

11. Analyze this variant of nim: On any move a player must remove at least

half the number of counters from the heap.5

12. Find the periods for allbut(1), allbut(2), and allbut(3). Conjecture

and prove your conjecture for the period of allbut(q).

5The nim-sequence for the game in which no more than half can be removed has a re-
markable self-similarity property: If you remove the first occurrence of each number in the
nim-sequence, then the resulting sequence is the same as the original! See [Lev06].
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13. Find the periods for allbut(1, 2), allbut(2, 3), and allbut(3, 4). Con-

jecture and prove your conjecture for the period of allbut(q, q + 1).

14. Find the nim-sequence for allbut(q, r), q < r. (Hint: There are two

cases r = 2q and r 6= 2q.)

15. Prove Theorem 7.48 on page 155.

16. The rules of the game turn-a-block are at the textbook website, www.

lessonsinplay.com, and you can play the game against the computer. De-

termine a winning strategy for turn-a-block. You should be able to

consistently beat the computer on the hard setting at 3 × 3 and 5 × 3

turn-a-block (and even bigger boards!). You should be able to determine

who should win from any position up to 5 × 5.


