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What we care about when we care about extremal theory

• Problems of the form: maximize/minimize X , subject to Y .

• Or: how does the maximum/minimum value of X (subject to
Y ) compare to the average?

Cycles in Tournaments Natasha Komarov St. Lawrence University



History and motivation Our results Other results & open problems

What we care about when we care about extremal theory

• Problems of the form: maximize/minimize X , subject to Y .

• Or: how does the maximum/minimum value of X (subject to
Y ) compare to the average?

Cycles in Tournaments Natasha Komarov St. Lawrence University



History and motivation Our results Other results & open problems

What we care about when we care about extremal theory

• Problems of the form: maximize/minimize X , subject to Y .

• Or: how does the maximum/minimum value of X (subject to
Y ) compare to the average?

Cycles in Tournaments Natasha Komarov St. Lawrence University



History and motivation Our results Other results & open problems

What we care about when we care about extremal theory

• Our motivating question: How does the maximum number
of k-cycles in any tournament on n vertices compare to the
expected number of k-cycles in a random tournament on n
vertices?

• What’s already known: k = 3, k = 4, and (very) special cases
for k ≥ 5 (but nothing general).

• We completely answer the question of the k = 5 case.
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Cycles in tournaments

Let En
k be the expected number of directed k-cycles in a random

tournament on n vertices.

Theorem (Kendall & Smith 1940)

The number of directed 3-cycles in a tournament is maximized at
approximately

n3

24
∼ En

3 .
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Cycles in tournaments

Does this still happen when n > 4?

Unknown for 25 years!
And then...

Theorem (Beineke & Harary 1965)

The number of directed 4-cycles in a tournament is maximized at
approximately

n4

48
=

4

3
En
4 .
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Cycles in tournaments

Is k = 3 just a fluke?

What happens for k > 4?
Attempts made for k = 5 for a while.
(E.g. David Berman’s PhD thesis & subsequent work: “The
Number of 5-Cycles in a Tournament”—UPenn 1973)
No graphs with asymptotically more 5-cycles than average found,
but proof remains elusive.
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5-cycles in tournaments

Theorem (Komarov & Mackey 2014)

The maximum number of directed 5-cycles in a tournament is
asymptotically equal to 3

4

(n
5

)
= En

5 .
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5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament
T = (V ,E ) is a sequence (Xe)e∈E of ordered 4-tuples
Xe = (A(e),B(e),C (e),D(e)) where for e = (u, v) we define

• A(u, v) is the number of vertices that both u and v have as
out-neighbors

• B(u, v) is the number of vertices that both u and v have as
in-neighbors

• C (u, v) is the number of vertices that are out-neighbors of u
and in-neighbors of v

• D(u, v) is the number of vertices that form a directed 3-cycle
with u and v

Definition. γ(T , k) is the number of k-cycles in a given
tournament T .
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The 12 non-isomorphic tournaments on 5 vertices

Call these T1 through T12.

γ(T1, 5) = γ(T2, 5) = · · · = γ(T6, 5) = 0.
γ(T7, 5) = γ(T8, 5) = γ(T9, 5) = 1.
γ(T10, 5) = γ(T12, 5) = 2.
γ(T11, 5) = 3.
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5-cycles in tournaments: proof

Let T be a tournament. Let Ti (T ) be the number of times that
Ti appears a subtournament in T .
Then
γ(T , 5) = T7(T )+T8(T )+T9(T )+2T10(T )+3T11(T )+2T12(T ).
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5-cycles in tournaments: proof

We can count other quantities by counting the appearances of Ti ...

Example. Compute
∑

(u,v)∈E

(
A(u, v)

2

)
C (u, v).

This counts the number of subtournaments of size 5 in T that
look like:

u v

This occurs once in T1, once in T4, and twice in T6.
So
∑(A(u,v)

2

)
C (u, v) = T1(T ) + T4(T ) + 2T6(T ).
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5-cycles in tournaments: proof

Computing a few similar quantities (13, in all) in this way, then
working some linear algebra magic, gives rise to a formula!

Theorem (Komarov & Mackey 2014)

The number of 5-cycles in an n-tournament T = (V ,E ) with edge
degree sequence (A(e),B(e),C (e),D(e))e∈E is given by

3

4

(
n

5

)
−1

8

∑
(u,v)∈E

[(C+D)(A−B)2 + (A+B)(C−D)2]

+
1

4

∑
(u,v)∈E

(A+B)(C+D).

where A=A(u, v),B=B(u, v),C=C (u, v), and D=D(u, v).
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5-cycles in tournaments: consequences

Corollary

For all n-tournaments T ,

γ(T , 5) ≤ 3

4

(
n

5

)
+

1

4

(
n

2

)(
n − 2

2

)2

= En
5 + O(n4)

∼ En
5
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8

So γ(T , 5) ∼ En
5 if and only if the standard deviation of the

out-degrees is o(n).
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Bigger cycles in tournaments

Theorem (Savchenko 2015)

Among regular tournaments R, the maximum number of k-cycles
is asymptotically greater than En

k if k ≡ 0 mod 4.

Little else is known so far!
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Bigger cycles in tournaments

Natural next steps:

• Formula for 6-cycles in a tournament (given degree sequence
of vertex 3-tuples).

• For what k does the maximum number of k cycles
approximately equal En

k ?

• Do regular tournaments have the most k-cycles?
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Thank you!

Cycles in Tournaments Natasha Komarov St. Lawrence University



History and motivation Our results Other results & open problems

References

L.W. Beineke and F. Harary. The maximum number of strongly connected subtournaments. Canad. Math.

Bull., 8(4), 1965.

S.A. Burr and V. Rosta. On the Ramsey multiplicities of graph problems and recent results. J. Graph

Theory, 4:347361, 1980.

P. Erdös. On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hung. Acad.

Sci., 2(A3):459464, 1962.

A.W. Goodman. On sets of acquaintances and strangers at any party. Amer. Math. Monthly, 66:778783,

1959.

N. Komarov and J. Mackey, On the number of 5-cycles in a tournament, submitted 2015.

J. W. Moon. Topics on Tournaments. Holt, Rinehart, and Winston, USA, 1968.

S.V. Savchenko, On 5-cycles and 6-cycles in regular n-tournaments, J. Graph Theory, to appear 2015.

G. Thomason. Blue-empty chromatic graphs: A disproof of a conjecture of Erdös in Ramsey theory. J.

London Math. Soc., 39(2):246255, 1989.

Cycles in Tournaments Natasha Komarov St. Lawrence University



History and motivation Our results Other results & open problems

Historical context: undirected graphs

Let G be a graph. Let Kj(G ), Ij(G ) be the number of complete
subgraphs on j vertices in G and the number of independent sets
of j vertices in G , respectively.
Analogous question for undirected graphs: How does the
minimum over all n-vertex graphs G of Kj(G ) + Ij(G ) compare to
the expected value for a random graph?

Theorem (Goodman 1959)

The minimum value of K3(G ) + I3(G ) over all n-vertex undirected
graphs G is asymptotically equal to the expected number in a
p = 1

2 random graph, 1
4

(n
3

)
.
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Erdös-Burr-Rosta Conjecture

What about for j > 3?

Conjecture (Erdös 1962, Burr & Rosta 1980)

For any graph G , and any integer j ≥ 3,

Ij(G ) + Kj(G ) is minimized at about

(
n

j

)
21−(j

2)

(which is the expected number of these in a p = 1
2 random graph).
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Erdös-Burr-Rosta Conjecture

Not so fast...

Theorem (Thomason 1989)

The Erdös-Burr-Rosta Conjecture is false!
In fact, for each j ≥ 4, there exists a family of graphs G such that

Ij(G ) + Kj(G ) >

(
n

j

)
21−(j

2)
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