Cycles in Tournaments

Natasha Komarov
St. Lawrence University

MAA Seaway Section

November 5, 2015
joint work with John Mackey (Carnegie Mellon University)

Table of Contents

(1) History and motivation
(2) Our results
(3) Other results \& open problems

Table of Contents

(1) History and motivation
(2) Our results
(3) Other results \& open problems

What we care about when we care about extremal theory

What we care about when we care about extremal theory

- Problems of the form: maximize/minimize X, subject to Y.

What we care about when we care about extremal theory

- Problems of the form: maximize/minimize X, subject to Y.
- Or: how does the maximum/minimum value of X (subject to Y) compare to the average?

What we care about when we care about extremal theory

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?
- What's already known:

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?
- What's already known: $k=3$

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?
- What's already known: $k=3, k=4$

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?
- What's already known: $k=3, k=4$, and (very) special cases for $k \geq 5$ (but nothing general).

What we care about when we care about extremal theory

- Our motivating question: How does the maximum number of k-cycles in any tournament on n vertices compare to the expected number of k-cycles in a random tournament on n vertices?
- What's already known: $k=3, k=4$, and (very) special cases for $k \geq 5$ (but nothing general).
- We completely answer the question of the $k=5$ case.

Cycles in tournaments

Cycles in tournaments

Let E_{k}^{n} be the expected number of directed k-cycles in a random tournament on n vertices.

Cycles in tournaments

Let E_{k}^{n} be the expected number of directed k-cycles in a random tournament on n vertices.

Theorem (Kendall \& Smith 1940)

The number of directed 3-cycles in a tournament is maximized at approximately

$$
\frac{n^{3}}{24} \sim E_{3}^{n}
$$

Cycles in tournaments

Does this still happen when $n>4$?

Cycles in tournaments

Does this still happen when $n>4$? Unknown for 25 years!

Cycles in tournaments

Does this still happen when $n>4$? Unknown for 25 years! And then...

Cycles in tournaments

Does this still happen when $n>4$? Unknown for 25 years!
And then...

Theorem (Beineke \& Harary 1965)

The number of directed 4-cycles in a tournament is maximized at approximately

$$
\frac{n^{4}}{48}=\frac{4}{3} E_{4}^{n} .
$$

Cycles in tournaments

Is $k=3$ just a fluke?

Cycles in tournaments

Is $k=3$ just a fluke? What happens for $k>4$?

Cycles in tournaments

Is $k=3$ just a fluke? What happens for $k>4$?
Attempts made for $k=5$ for a while.

Cycles in tournaments

Is $k=3$ just a fluke? What happens for $k>4$?
Attempts made for $k=5$ for a while.
(E.g. David Berman's PhD thesis \& subsequent work: "The Number of 5-Cycles in a Tournament" -UPenn 1973)

Cycles in tournaments

Is $k=3$ just a fluke? What happens for $k>4$?
Attempts made for $k=5$ for a while.
(E.g. David Berman's PhD thesis \& subsequent work: "The Number of 5-Cycles in a Tournament"—UPenn 1973)
No graphs with asymptotically more 5-cycles than average found, but proof remains elusive.

Table of Contents

(1) History and motivation
(2) Our results
(3) Other results \& open problems

5-cycles in tournaments

5-cycles in tournaments

Theorem (Komarov \& Mackey 2014)

The maximum number of directed 5-cycles in a tournament is asymptotically equal to $\frac{3}{4}\binom{n}{5}=E_{5}^{n}$.

5-cycles in tournaments: proof

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

- $A(u, v)$ is the number of vertices that both u and v have as out-neighbors

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

- $A(u, v)$ is the number of vertices that both u and v have as out-neighbors
- $B(u, v)$ is the number of vertices that both u and v have as in-neighbors

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

- $A(u, v)$ is the number of vertices that both u and v have as out-neighbors
- $B(u, v)$ is the number of vertices that both u and v have as in-neighbors
- $C(u, v)$ is the number of vertices that are out-neighbors of u and in-neighbors of v

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

- $A(u, v)$ is the number of vertices that both u and v have as out-neighbors
- $B(u, v)$ is the number of vertices that both u and v have as in-neighbors
- $C(u, v)$ is the number of vertices that are out-neighbors of u and in-neighbors of v
- $D(u, v)$ is the number of vertices that form a directed 3-cycle with u and v

5-cycles in tournaments: proof

Definition. The edge degree sequence of a tournament $T=(V, E)$ is a sequence $\left(X_{e}\right)_{e \in E}$ of ordered 4-tuples $X_{e}=(A(e), B(e), C(e), D(e))$ where for $e=(u, v)$ we define

- $A(u, v)$ is the number of vertices that both u and v have as out-neighbors
- $B(u, v)$ is the number of vertices that both u and v have as in-neighbors
- $C(u, v)$ is the number of vertices that are out-neighbors of u and in-neighbors of v
- $D(u, v)$ is the number of vertices that form a directed 3-cycle with u and v

Definition. $\gamma(T, k)$ is the number of k -cycles in a given tournament T.

The 12 non-isomorphic tournaments on 5 vertices

The 12 non-isomorphic tournaments on 5 vertices

(0,1,2,3,4)	(0, 1, 3, 3, 3)	(0,2, 2, 3, 3)	(0, 2, 2, 2, 4)
$120 \quad I$	$40 \quad C_{3}$	$120 \quad I$	$40 \quad C_{3}$
		$.$	
(1,1,1,3,4)	(1, 1, 2, 2, 4)	(1, 1, 2, 3, 3)	(1, 1, 2, 3, 3)
$40 \quad C_{3}$	$120 \quad I$	120	120
(1,2,2,2,3)	(1,2,2, 2, 3)	(1,2,2, 2, 3)	(2, 2, 2, 2, 2)
$120 \quad I$	$120 \quad I$	$40 \quad C_{3}$	$24 \quad C_{5}$

The 12 non-isomorphic tournaments on 5 vertices

Call these T_{1} through T_{12}.

The 12 non-isomorphic tournaments on 5 vertices

(0, 1,2,3,4)	(0, 1, 3, 3, 3)	(0,2,2,3,3)	(0, 2, 2, 2, 4)
$120 \quad I$	$40 \quad C_{3}$	$120 \quad I$	$40 \quad C_{3}$
		$:\rangle$	
(1,1, 1,3,4)	(1,1,2,2,4)	(1,1,2,3,3)	(1, 1, 2, 3, 3)
$40 \quad C_{3}$	$120 \quad 1$	$120 \quad I$	$120 \quad I$
$:)$			
(1,2,2,2,3)	(1,2,2, 2,3)	(1,2,2,2,3)	(2, 2, 2, 2, 2)
$120 \quad I$	$120 \quad I$	$40 \quad C_{3}$	$24 \quad C_{5}$

Call these T_{1} through T_{12}.
$\gamma\left(T_{1}, 5\right)=\gamma\left(T_{2}, 5\right)=\cdots=\gamma\left(T_{6}, 5\right)=0$.

The 12 non-isomorphic tournaments on 5 vertices

(0, 1, 2, 3, 4)	(0, 1, 3, 3, 3)	(0,2,2,3,3)	(0,2, 2, 2, 4)
$120 \quad I$	$40 \quad C_{3}$	120	$40 \quad C_{3}$
		$:\rangle$	
(1, 1, 1, 3, 4)	(1, 1, 2, 2, 4)	(1,1,2,3,3)	(1,1,2,3,3)
40) $\quad C_{3}$	$120 \quad 1$	120	120
$: 5$			
(1,2,2,2,3)	(1,2,2,2,3)	(1,2,2,2,3)	(2, 2, 2, 2, 2)
$120 \quad l$	$120 \quad I$	$40 \quad C_{3}$	$24 \quad C_{5}$

Call these T_{1} through T_{12}.
$\gamma\left(T_{1}, 5\right)=\gamma\left(T_{2}, 5\right)=\cdots=\gamma\left(T_{6}, 5\right)=0$.
$\gamma\left(T_{7}, 5\right)=\gamma\left(T_{8}, 5\right)=\gamma\left(T_{9}, 5\right)=1$.

The 12 non-isomorphic tournaments on 5 vertices

(0,1,2,3,4)	(0, 1, 3, 3, 3)	(0,2,2,3,3)	(0, 2, 2, 2, 4)
$120 \quad I$	$40 \quad C_{3}$	120	$40 \quad C_{3}$
		$:\rangle$	
(1,1, 1, 3, 4)	(1,1,2, 2, 4)	(1,1,2,3,3)	(1, 1, 2, 3, 3)
4) $\quad C_{3}$	$120 \quad 1$	120	$120 \quad I$
0			
(1,2,2,2,3)	(1,2, 2, 2, 3)	(1,2,2,2,3)	(2, 2, 2, 2, 2)
$120 \quad 1$	$120 \quad I$	$40 \quad C_{3}$	$24 \quad C_{5}$

Call these T_{1} through T_{12}.

$$
\begin{aligned}
& \gamma\left(T_{1}, 5\right)=\gamma\left(T_{2}, 5\right)=\cdots=\gamma\left(T_{6}, 5\right)=0 . \\
& \gamma\left(T_{7}, 5\right)=\gamma\left(T_{8}, 5\right)=\gamma\left(T_{9}, 5\right)=1 \\
& \gamma\left(T_{10}, 5\right)=\gamma\left(T_{12}, 5\right)=2
\end{aligned}
$$

The 12 non-isomorphic tournaments on 5 vertices

(0,1,2,3,4)	(0, 1, 3, 3, 3)	(0,2,2,3,3)	(0, 2, 2, 2, 4)
$120 \quad I$	$40 \quad C_{3}$	120	$40 \quad C_{3}$
		$:\rangle$	
(1,1, 1, 3, 4)	(1,1,2, 2, 4)	(1,1,2,3,3)	(1, 1, 2, 3, 3)
4) $\quad C_{3}$	$120 \quad 1$	120	$120 \quad I$
0			
(1,2,2,2,3)	(1,2, 2, 2, 3)	(1,2,2,2,3)	(2, 2, 2, 2, 2)
$120 \quad 1$	$120 \quad I$	$40 \quad C_{3}$	$24 \quad C_{5}$

Call these T_{1} through T_{12}.

$$
\begin{aligned}
& \gamma\left(T_{1}, 5\right)=\gamma\left(T_{2}, 5\right)=\cdots=\gamma\left(T_{6}, 5\right)=0 . \\
& \gamma\left(T_{7}, 5\right)=\gamma\left(T_{8}, 5\right)=\gamma\left(T_{9}, 5\right)=1 \\
& \gamma\left(T_{10}, 5\right)=\gamma\left(T_{12}, 5\right)=2 \\
& \gamma\left(T_{11}, 5\right)=3
\end{aligned}
$$

5-cycles in tournaments: proof

5-cycles in tournaments: proof

Let T be a tournament.

5-cycles in tournaments: proof

Let T be a tournament. Let $T_{i}(T)$ be the number of times that T_{i} appears a subtournament in T.

5-cycles in tournaments: proof

Let T be a tournament. Let $T_{i}(T)$ be the number of times that T_{i} appears a subtournament in T.
Then
$\gamma(T, 5)=T_{7}(T)+T_{8}(T)+T_{9}(T)+2 T_{10}(T)+3 T_{11}(T)+2 T_{12}(T)$.

5-cycles in tournaments: proof

5-cycles in tournaments: proof

We can count other quantities by counting the appearances of $T_{i} \ldots$

5-cycles in tournaments: proof

We can count other quantities by counting the appearances of $T_{i} \ldots$
Example. Compute $\sum_{(u, v) \in E}\binom{A(u, v)}{2} C(u, v)$.

5-cycles in tournaments: proof

We can count other quantities by counting the appearances of $T_{i} \ldots$
Example. Compute $\sum_{(u, v) \in E}\binom{A(u, v)}{2} C(u, v)$.
This counts the number of subtournaments of size 5 in T that look like:

5-cycles in tournaments: proof

We can count other quantities by counting the appearances of $T_{i} \ldots$
Example. Compute $\sum_{(u, v) \in E}\binom{A(u, v)}{2} C(u, v)$.
This counts the number of subtournaments of size 5 in T that look like:

This occurs once in T_{1}, once in T_{4}, and twice in T_{6}.

5-cycles in tournaments: proof

We can count other quantities by counting the appearances of $T_{i} \ldots$
Example. Compute $\sum_{(u, v) \in E}\binom{A(u, v)}{2} C(u, v)$.
This counts the number of subtournaments of size 5 in T that look like:

This occurs once in T_{1}, once in T_{4}, and twice in T_{6}.
So $\sum\binom{A(u, v)}{2} C(u, v)=T_{1}(T)+T_{4}(T)+2 T_{6}(T)$.

5-cycles in tournaments: proof

5-cycles in tournaments: proof

Computing a few similar quantities (13, in all) in this way, then working some linear algebra magic, gives rise to a formula!

5-cycles in tournaments: proof

Computing a few similar quantities (13, in all) in this way, then working some linear algebra magic, gives rise to a formula!

Theorem (Komarov \& Mackey 2014)

The number of 5 -cycles in an n-tournament $T=(V, E)$ with edge degree sequence $(A(e), B(e), C(e), D(e))_{e \in E}$ is given by

$$
\begin{aligned}
& \frac{3}{4}\binom{n}{5} \\
& -\frac{1}{8} \sum_{(u, v) \in E}\left[(C+D)(A-B)^{2}+(A+B)(C-D)^{2}\right] \\
& +\frac{1}{4} \sum_{(u, v) \in E}(A+B)(C+D)
\end{aligned}
$$

where $A=A(u, v), B=B(u, v), C=C(u, v)$, and $D=D(u, v)$.

5-cycles in tournaments: consequences

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\gamma(T, 5) \leq \frac{3}{4}\binom{n}{5}+\frac{1}{4}\binom{n}{2}\left(\frac{n-2}{2}\right)^{2}
$$

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\begin{aligned}
\gamma(T, 5) & \leq \frac{3}{4}\binom{n}{5}+\frac{1}{4}\binom{n}{2}\left(\frac{n-2}{2}\right)^{2} \\
& =E_{5}^{n}+O\left(n^{4}\right)
\end{aligned}
$$

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\begin{aligned}
\gamma(T, 5) & \leq \frac{3}{4}\binom{n}{5}+\frac{1}{4}\binom{n}{2}\left(\frac{n-2}{2}\right)^{2} \\
& =E_{5}^{n}+O\left(n^{4}\right) \\
& \sim E_{5}^{n}
\end{aligned}
$$

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\begin{aligned}
\gamma(T, 5) \geq & \frac{3}{4}\binom{n}{5} \\
& -\frac{1}{4}(n-2)(n-3) \sum_{w \in V}\left(\operatorname{od}(w)-\frac{n-1}{2}\right)^{2} \\
& -\frac{n(n-2)\left(n^{2}-2 n+2\right)}{8}
\end{aligned}
$$

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\begin{aligned}
\gamma(T, 5) \geq & \frac{3}{4}\binom{n}{5} \\
& -\frac{1}{4}(n-2)(n-3) \sum_{w \in V}\left(\operatorname{od}(w)-\frac{n-1}{2}\right)^{2} \\
& -\frac{n(n-2)\left(n^{2}-2 n+2\right)}{8} \\
\sim & E_{5}^{n}-\frac{n^{2}}{4} n(\text { variance of out-degree })-\frac{n^{4}}{8}
\end{aligned}
$$

5-cycles in tournaments: consequences

Corollary

For all n-tournaments T,

$$
\begin{aligned}
\gamma(T, 5) \geq & \frac{3}{4}\binom{n}{5} \\
& -\frac{1}{4}(n-2)(n-3) \sum_{w \in V}\left(\operatorname{od}(w)-\frac{n-1}{2}\right)^{2} \\
& -\frac{n(n-2)\left(n^{2}-2 n+2\right)}{8} \\
\sim & E_{5}^{n}-\frac{n^{2}}{4} n(\text { variance of out-degree })-\frac{n^{4}}{8}
\end{aligned}
$$

So $\gamma(T, 5) \sim E_{5}^{n}$ if and only if the standard deviation of the out-degrees is $o(n)$.

Table of Contents

(1) History and motivation
(2) Our results
(3) Other results \& open problems

Bigger cycles in tournaments

Bigger cycles in tournaments

Theorem (Savchenko 2015)

Among regular tournaments R, the maximum number of k-cycles is asymptotically greater than E_{k}^{n} if $k \equiv 0 \bmod 4$.

Bigger cycles in tournaments

Theorem (Savchenko 2015)

Among regular tournaments R, the maximum number of k-cycles is asymptotically greater than E_{k}^{n} if $k \equiv 0 \bmod 4$.

Little else is known so far!

Bigger cycles in tournaments

Bigger cycles in tournaments

Natural next steps:

Bigger cycles in tournaments

Natural next steps:

- Formula for 6-cycles in a tournament (given degree sequence of vertex 3-tuples).

Bigger cycles in tournaments

Natural next steps:

- Formula for 6-cycles in a tournament (given degree sequence of vertex 3-tuples).
- For what k does the maximum number of k cycles approximately equal E_{k}^{n} ?

Bigger cycles in tournaments

Natural next steps:

- Formula for 6-cycles in a tournament (given degree sequence of vertex 3-tuples).
- For what k does the maximum number of k cycles approximately equal E_{k}^{n} ?
- Do regular tournaments have the most k-cycles?

Thank you!

References

L.W. Beineke and F. Harary. The maximum number of strongly connected subtournaments. Canad. Math. Bull., 8(4), 1965.
S.A. Burr and V. Rosta. On the Ramsey multiplicities of graph problems and recent results. J. Graph Theory, 4:347361, 1980.

P. Erdös. On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hung. Acad. Sci., 2(A3):459464, 1962.
A.W. Goodman. On sets of acquaintances and strangers at any party. Amer. Math. Monthly, 66:778783, 1959.
N. Komarov and J. Mackey, On the number of 5-cycles in a tournament, submitted 2015.
J. W. Moon. Topics on Tournaments. Holt, Rinehart, and Winston, USA, 1968.
S.V. Savchenko, On 5-cycles and 6-cycles in regular n-tournaments, J. Graph Theory, to appear 2015.
G. Thomason. Blue-empty chromatic graphs: A disproof of a conjecture of Erdös in Ramsey theory. J. London Math. Soc., 39(2):246255, 1989.

Historical context: undirected graphs

Historical context: undirected graphs

Let G be a graph.

Historical context: undirected graphs

Let G be a graph. Let $K_{j}(G), I_{j}(G)$ be the number of complete subgraphs on j vertices in G and the number of independent sets of j vertices in G, respectively.

Historical context: undirected graphs

Let G be a graph. Let $K_{j}(G), I_{j}(G)$ be the number of complete subgraphs on j vertices in G and the number of independent sets of j vertices in G, respectively. Analogous question for undirected graphs: How does the minimum over all n-vertex graphs G of $K_{j}(G)+I_{j}(G)$ compare to the expected value for a random graph?

Historical context: undirected graphs

Let G be a graph. Let $K_{j}(G), I_{j}(G)$ be the number of complete subgraphs on j vertices in G and the number of independent sets of j vertices in G, respectively.
Analogous question for undirected graphs: How does the minimum over all n-vertex graphs G of $K_{j}(G)+I_{j}(G)$ compare to the expected value for a random graph?

Theorem (Goodman 1959)

The minimum value of $K_{3}(G)+I_{3}(G)$ over all n-vertex undirected graphs G is asymptotically equal to the expected number in a $p=\frac{1}{2}$ random graph, $\frac{1}{4}\binom{n}{3}$.

Erdös-Burr-Rosta Conjecture

Erdös-Burr-Rosta Conjecture

What about for $j>3$?

Erdös-Burr-Rosta Conjecture

What about for $j>3$?

Conjecture (Erdös 1962, Burr \& Rosta 1980)

For any graph G, and any integer $j \geq 3$,

$$
I_{j}(G)+K_{j}(G) \text { is minimized at about }\binom{n}{j} 2^{1-\binom{j}{2}}
$$

Erdös-Burr-Rosta Conjecture

What about for $j>3$?

Conjecture (Erdös 1962, Burr \& Rosta 1980)

For any graph G, and any integer $j \geq 3$,

$$
I_{j}(G)+K_{j}(G) \text { is minimized at about }\binom{n}{j} 2^{1-\binom{j}{2}}
$$

(which is the expected number of these in a $p=\frac{1}{2}$ random graph).

Erdös-Burr-Rosta Conjecture

Not so fast...

Erdös-Burr-Rosta Conjecture

Not so fast...
Theorem (Thomason 1989)
The Erdös-Burr-Rosta Conjecture is false!

Erdös-Burr-Rosta Conjecture

Not so fast...

Theorem (Thomason 1989)

The Erdös-Burr-Rosta Conjecture is false!
In fact, for each $j \geq 4$, there exists a family of graphs G such that

$$
I_{j}(G)+K_{j}(G)>\binom{n}{j} 2^{1-\binom{j}{2}}
$$

