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Background on Cops & Robbers Preliminaries Containability Containment number

Cop(s) & Robber

• Introduced by Nowakowski & Winkler [7] and Quilliot [9],
1983

• A cop pursues a robber on a simple, connected, reflexive graph

• Players move alternately, with full information

• Characterization of cop-win graphs as dismantlable
graphs [7]; useful in unexpected fields (e.g. statistical
physics [3])

• Multiple cops (first published in [1]): all cops can move
simultaneously on their turn

• Many results on cop number ; central question is Meyniel’s
conjecture [4]: c(G ) = O(

√
n)

• Some results on capture time [2, 5]
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Containment set-up

• Cops and robber play with full information, moving alternately

• Play on simple, connected, reflexive graphs

• Each cop moves from edge to adjacent edge

• Robber moves vertex to adjacent vertex; cannot use an
occupied edge

• For cops to win, they must contain the robber by occupying
all edges incident to his position

• What can we say about the containment number, ξ(G ), of
a graph G?
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Initial thoughts on ξ(G )

For all G , ξ(G ) ≥ ∆(G ).
If ξ(G ) = ∆(G ), then G is containable.

Examples:

• Cn

• Graphs containing a universal vertex

• Trees
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Another family of containable graphs

Proposition

Ck�K2 is containable for all integers k ≥ 3.

Game states:

• Pt : it’s the robber’s turn, two cops occupy parallel edges, the
third cop is on one of the cycles; a shortest path from third
cop to the cop on the same cycle has distance t and contains
the robber’s position

• Qt : it’s the robber’s turn, two cops occupy parallel edges,
third cop is on an edge between the cycles such that a
shortest path from third cop to the other two cops has
distance t and contains the robber’s position
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Another family of containable graphs

Proposition

Ck�K2 is containable for all integers k ≥ 3.

• Cops start at antipodal points;

after robber’s placement, cops
can move to be at state Pt with t < k

2 − 1.

• If game is in state Pt (t > 0) then cops can move game into
state Qt ; if game is in state Qt then cops can move game into
Pt′ with t ′ < t.
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Another family of containable graphs

Proposition

Ck�K2 is containable for all integers k ≥ 3.

Cops can bring game to state P0:

RC1
C2

C3

Figure: State P0
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Another family of containable graphs

Proposition

Ck�K2 is containable for all integers k ≥ 3.

Robber only has one option.

RC1
C2

C3
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Another family of containable graphs

Proposition

Ck�K2 is containable for all integers k ≥ 3.

Robber only has one option.
The cops then move to their endgame configuration:

Cops win on their next turn regardless of robber’s move. �
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Conjectural interlude

Proposition

Ck�K2 is containable for all integers k ≥ 3.

Proposition

T�K2 is containable for all trees T .

Is G�K2 containable when G is containable?
No. Counterexample: hypercubes.
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Hypercubes

Proposition

Q3 is containable.

Proof.
Q3 = C4�K2. �

Proposition

Qn is not containable for n ≥ 4.

In fact, at least 2n−2 cops are required.
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Hypercubes are not containable: Proof.

Robber is at v .

N(v) = {v1, . . . , vn}.
We’ll show that fewer than 2n−2 cops cannot contain a lazy
robber (who doesn’t move if he doesn’t have to).
Four cases:

1 0 cops incident with robber.

2 Exactly 1 cop incident with robber.

3 Exactly k cops incident with robber (1 < k < n−1).

4 Exactly n−1 cops incident with robber.
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Hypercubes are not containable: Proof.

Case 1: 0 cops incident

After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}.

Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape.

So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.

Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident

WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}.

Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.

Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in
{v1, ..., vn}. Each one requires n cops that can move incident to it
in order to prevent robber’s escape. So at least n2/2 cops are
necessary in order for the cops to win on their move after the
robber’s turn.
Case 2: exactly 1 cop incident
WLOG cop is on edge {v , vn}. Every other cop can be adjacent to
at most 2 of the vertices in {v1, ..., vn−1} on the next cop move.
Each of these vertices requires n−1 additional cops, so at least
(n − 1)(n − 1)/2 additional cops are necessary.

Containment: a Cops & Robber Variation Natasha Komarov



Background on Cops & Robbers Preliminaries Containability Containment number

Hypercubes are not containable: Proof.

Case 3: Exactly 1 < k < n−1 cops incident

.
WLOG, they’re at {v , vn−k+1}, {v , vn−k+2}, . . . , {v , vn}. To
prevent escape to v1, we need n−1 additional cops. To also
prevent escape to v2, we need an additional n−3 cops (two of the
cops preventing escape to v1 can simultaneously be used for this
purpose).
This is already no less than 2n−2.
Case 4: Exactly n−1 cops incident
An additional n−1 cops must be incident with robber’s one escape
vertex. �
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Hypercubes, continued

Proposition

ξ(Qn) ≤
(n

2

)
for all integers n ≥ 3.

We can prove something stronger if we think about retracts.
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Retracts

An induced subgraph H ⊂ G is called a retract if there is a graph
homomorphism φ : G → H that restricts to the identity on H.

Theorem

If H ⊂ G is a retract of G , then ξ(H) ≤ ξ(G ).

Proof idea: play a game on G and a “shadow game” on H, as
determined by the retract. When the game ends on G , the shadow
game ends on H. �

The analogous result holds for Cops & Robber, too.
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Cubical retracts

Let H ⊂ G be a retract under φ : G → H.

H is a cubical retract
of G if whenever v ∈ V (G ) \ V (H) is a vertex adjacent to h ∈ H,
then we have h = φ(v).

Examples.

• Can retract K3 onto K2, but not cubically

• Can retract C4 onto K2 either as a cubical retract or not
(either send both vertices outside the subgraph onto different
vertices or the same vertex of K2)

• Qn+1 retracts cubically onto Qn × {0} ∼= Qn by setting the
last coordinate to 0.

Containment: a Cops & Robber Variation Natasha Komarov
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Cubical retracts

Theorem

Let H ⊂ G be a cubical retract of G under φ. Then

ξ(G ) ≤ max{ξ(H), ξ(G − H)}+dd(G ,H)+∆(H)−1

where dd(G ,H) = maxx∈H(dG (v)− dH(v)) is the degree
discrepancy of H.

Lemma

Suppose that we are playing a containment game on a graph G
and that there are at least c(G ) + k − 1 non-tail cops, then k new
tail cops can be attached to R.

Containment: a Cops & Robber Variation Natasha Komarov
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Cubical retracts

Proof.
Let

m = dd(G ,H) + ∆(H) + c(H)− 2

and
n = max{ξ(H), ξ(G − H)} − c(H) + 1.

So we’re showing ξ(G ) ≤ m + n.

Start with m + n cops.
Phase 1: we use m of the cops to attach ∆(H) + dd(G ,H)− 1
tails to φ(R) in H (by lemma). Now there are
n + c(H)−1 = max{ξ(H), ξ(G − H)} non-tail cops left.
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Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they
contain him on H.

If he leaves H, then the free
max{ξ(H), ξ(G − H)} cops eventually contain him on G − H.

Note: if R ever moves from G −H to H, he must move onto φ(R)
(using the cubical property of the retract); we can fan out the
dd(G ,H) + ∆(H)− 1 tails on φ(R) to prevent R from moving to
any vertex other than the vertex of G − H he came from. The
cops from Phase 2 can pursue R as if he remained on the vertex he
stood on before his move onto H. Since there are at least
ξ(G − H) cops, they eventually contain the robber. �
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Cubical retracts

Corollary

ξ(Qn) ≤ n(n − 1)

2
for all n ≥ 3.

Proof.
dd(Qn+1,Qn) = 1 and ∆(Qn) = n, so

ξ(Qn+1) ≤ ξ(Qn) + 1 + n − 1 = ξ(Qn) + n.

Use ξ(Q3) = 3 and induction to get the desired result. �
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More containment number results

Proposition

If G is a ∆-regular (∆ > 2) graph with girth at least 5, then G is
not containable.

Example: Petersen graph (containment number = 4)

Proposition

If G has girth at least 7 and is ∆-regular (∆ > 2), then G is not
containable by ∆ + 1 cops.
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More general result on containment number

Theorem

For all G , c(G )≤ξ(G )≤∆(G )γ(G ).

Proof sketch.
Lower bound: ξ(G ) cops play a Cops & Robber shadow game,
with each cop staying on an endpoint of her Containment
counterpart’s edge; when the Containment game ends successfully
for the cops, the Cops & Robber shadow game does too.

Upper bound: place a cop on each of the edges incident with each
of the vertices in a dominating set of G . They can capture the
robber in one step. �
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Containment number conjecture

Conjecture

For all graphs G , ξ(G )≤∆(G )c(G ).

This conjecture does hold “on average” in many random
graphs [8].
c(Qn) = dn+1

2 e (see [6]), so hypercubes provide an infinite class of
examples where ξ(G ) is strictly less than ∆(G )c(G ).
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Other things to think about

• Characterization of containable graphs.

• For what containable graphs G is G�K2 containable? What
about G�H for containable graphs G and H?

• What happens if the game is played on non-reflexive graphs?
ξ(T ) = 1 for all trees and the Petersen graph becomes
containable. Non-reflexive containability should probably be
defined as ξ(G ) = δ(G ).
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Thank you!
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