Containment: a Cops & Robber Variation

Natasha Komarov

Department of Math, CS, and Stats
St. Lawrence University

University of Bordeaux
29 March 2019
Table of Contents

1. Background on Cops & Robbers
2. Preliminaries
3. Containability
4. Containment number
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7];
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
- Multiple cops (first published in [1]):
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
- Multiple cops (first published in [1]): all cops can move simultaneously on their turn
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
- Multiple cops (first published in [1]): all cops can move simultaneously on their turn
- Many results on cop number;
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
- Multiple cops (first published in [1]): all cops can move simultaneously on their turn
- Many results on cop number; central question is Meyniel’s conjecture [4]: $c(G) = O(\sqrt{n})$
Cop(s) & Robber

- Introduced by Nowakowski & Winkler [7] and Quilliot [9], 1983
- A cop pursues a robber on a simple, connected, reflexive graph
- Players move alternately, with full information
- Characterization of cop-win graphs as dismantlable graphs [7]; useful in unexpected fields (e.g. statistical physics [3])
- Multiple cops (first published in [1]): all cops can move simultaneously on their turn
- Many results on cop number; central question is Meyniel’s conjecture [4]: \(c(G) = O(\sqrt{n}) \)
- Some results on capture time [2, 5]
Table of Contents

1. Background on Cops & Robbers
2. Preliminaries
3. Containability
4. Containment number
Containment set-up

- Cops and robber play with full information, moving alternately
Containment set-up

- Cops and robber play with full information, moving alternately
- Play on simple, connected, reflexive graphs
Containment set-up

- Cops and robber play with full information, moving alternately
- Play on simple, connected, reflexive graphs
- Each cop moves from edge to adjacent edge
Containment set-up

- Cops and robber play with full information, moving alternately
- Play on simple, connected, reflexive graphs
- Each cop moves from edge to adjacent edge
- Robber moves vertex to adjacent vertex;
Containment set-up

- Cops and robber play with full information, moving alternately
- Play on simple, connected, reflexive graphs
- Each cop moves from edge to adjacent edge
- Robber moves vertex to adjacent vertex; cannot use an occupied edge
Containment set-up

- Cops and robber play with full information, moving alternately
- Play on simple, connected, reflexive graphs
- Each cop moves from edge to adjacent edge
- Robber moves vertex to adjacent vertex; cannot use an occupied edge
- For cops to win, they must contain the robber by occupying all edges incident to his position
Containment set-up

- Cops and robber play with full information, moving alternately.
- Play on simple, connected, reflexive graphs.
- Each cop moves from edge to adjacent edge.
- Robber moves vertex to adjacent vertex; cannot use an occupied edge.
- For cops to win, they must contain the robber by occupying all edges incident to his position.
- What can we say about the containment number, $\xi(G)$, of a graph G?
Initial thoughts on $\xi(G)$
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$.
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$.
If $\xi(G) = \Delta(G)$, then G is containable.
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$. If $\xi(G) = \Delta(G)$, then G is containable.

Examples:
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$.
If $\xi(G) = \Delta(G)$, then G is containable.

Examples:

- C_n
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$.
If $\xi(G) = \Delta(G)$, then G is **containable**.

Examples:

- C_n
- Graphs containing a universal vertex
Initial thoughts on $\xi(G)$

For all G, $\xi(G) \geq \Delta(G)$. If $\xi(G) = \Delta(G)$, then G is **containable**.

Examples:

- C_n
- Graphs containing a universal vertex
- Trees
Table of Contents

1. Background on Cops & Robbers

2. Preliminaries

3. Containability

4. Containment number
Another family of containable graphs
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Game states:

- P_t: it’s the robber’s turn,
Another family of containable graphs

Proposition

\(C_k \square K_2 \) is containable for all integers \(k \geq 3 \).

Game states:

- \(P_t \): it’s the robber’s turn, two cops occupy parallel edges,
Another family of containable graphs

Proposition

$C_k \Box K_2$ is containable for all integers $k \geq 3$.

Game states:

- P_t: it’s the robber’s turn, two cops occupy parallel edges, the third cop is on one of the cycles;
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Game states:

- P_t: it’s the robber’s turn, two cops occupy parallel edges, the third cop is on one of the cycles; a shortest path from third cop to the cop on the same cycle has distance t and contains the robber’s position
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Game states:

- P_t: it’s the robber’s turn, two cops occupy parallel edges, the third cop is on one of the cycles; a shortest path from third cop to the cop on the same cycle has distance t and contains the robber’s position
- Q_t: it’s the robber’s turn, two cops occupy parallel edges,
Another family of containable graphs

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]

Game states:

- **\(P_t \)**: it’s the robber’s turn, two cops occupy parallel edges, the third cop is on one of the cycles; a shortest path from third cop to the cop on the same cycle has distance \(t \) and contains the robber’s position

- **\(Q_t \)**: it’s the robber’s turn, two cops occupy parallel edges, third cop is on an edge between the cycles such that
Another family of containable graphs

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]

Game states:

- \(P_t \): it’s the robber’s turn, two cops occupy parallel edges, the third cop is on one of the cycles; a shortest path from third cop to the cop on the same cycle has distance \(t \) and contains the robber’s position

- \(Q_t \): it’s the robber’s turn, two cops occupy parallel edges, third cop is on an edge between the cycles such that a shortest path from third cop to the other two cops has distance \(t \) and contains the robber’s position
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

• Cops start at antipodal points;
Another family of containable graphs

Proposition

\(C_k \square K_2 \) is containable for all integers \(k \geq 3 \).

- Cops start at antipodal points; after robber’s placement, cops can move to be at state \(P_t \) with \(t < \frac{k}{2} - 1 \).
Another family of containable graphs

Proposition

\(C_k \square K_2\) is containable for all integers \(k \geq 3\).

- Cops start at antipodal points; after robber’s placement, cops can move to be at state \(P_t\) with \(t < \frac{k}{2} - 1\).
- If game is in state \(P_t\) \((t > 0)\) then cops can move game into state \(Q_t\);
Another family of containable graphs

Proposition

\(C_k \square K_2 \) is containable for all integers \(k \geq 3 \).

- Cops start at antipodal points; after robber’s placement, cops can move to be at state \(P_t \) with \(t < \frac{k}{2} - 1 \).
- If game is in state \(P_t \) \((t > 0) \) then cops can move game into state \(Q_t \); if game is in state \(Q_t \) then cops can move game into \(P_{t'} \) with \(t' < t \).
Another family of containable graphs

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]

Cops can bring game to state \(P_0 \):
Another family of containable graphs

Proposition

\(C_k \square K_2 \) is containable for all integers \(k \geq 3 \).

Cops can bring game to state \(P_0 \):

![State P0 Diagram]

Figure: State \(P_0 \)
Another family of containable graphs

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Robber only has one option.
Another family of containable graphs

Proposition

\(C_k \square K_2 \) is containable for all integers \(k \geq 3 \).

Robber only has one option.
The cops then move to their endgame configuration:
Another family of containable graphs

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]

Robber only has one option.
The cops then move to their endgame configuration:

Cops win on their next turn regardless of robber’s move.
Conjectural interlude
Conjectural interlude

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]
Conjectural interlude

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Proposition

$T \square K_2$ is containable for all trees T.
Conjectural interlude

Proposition

$C_k \square K_2$ is containable for all integers $k \geq 3$.

Proposition

$T \square K_2$ is containable for all trees T.

Is $G \square K_2$ containable when G is containable?
Conjectural interlude

Proposition

\[C_k \square K_2 \text{ is containable for all integers } k \geq 3. \]

Proposition

\[T \square K_2 \text{ is containable for all trees } T. \]

Is \(G \square K_2 \) containable when \(G \) is containable?
No.
Conjectural interlud e

Proposition

$C_k \Box K_2$ is containable for all integers $k \geq 3$.

Proposition

$T \Box K_2$ is containable for all trees T.

Is $G \Box K_2$ containable when G is containable?

No. Counterexample: hypercubes.
Hypercubes

Proposition

\(Q_3 \) is containable.
Proposition

\(Q_3 \) is containable.

Proof.

\(Q_3 = C_4 \square K_2. \)
Hypercubes

Proposition

\(Q_3 \) is containable.

Proof.

\[Q_3 = C_4 \square K_2. \]

Proposition

\(Q_n \) is not containable for \(n \geq 4 \).
Hypercubes

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_3 is containable.</td>
</tr>
</tbody>
</table>

Proof.

$Q_3 = C_4 \square K_2$.

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_n is not containable for $n \geq 4$.</td>
</tr>
</tbody>
</table>

In fact, at least $2n-2$ cops are required.
Hypercubes are not containable: Proof.

Robber is at v.

$N(v) = \{v_1, \ldots, v_n\}$.

We'll show that fewer than $2^n - 2$ cops cannot contain a lazy robber (who doesn't move if he doesn't have to).

Four cases:

1. 0 cops incident with robber.
2. Exactly 1 cop incident with robber.
3. Exactly k cops incident with robber ($1 < k < n - 1$).
4. Exactly $n - 1$ cops incident with robber.
Hypercubes are not containable: Proof.

Robber is at v. $N(v) = \{v_1, \ldots, v_n\}$.
Hypercubes are not containable: Proof.

Robber is at v. $N(v) = \{v_1, \ldots, v_n\}$.
We’ll show that fewer than $2n-2$ cops cannot contain a lazy robber (who doesn’t move if he doesn’t have to).
Hypercubes are not containable: Proof.

Robber is at \(v \). \(N(v) = \{v_1, \ldots, v_n\} \).
We’ll show that fewer than \(2n-2 \) cops cannot contain a lazy robber (who doesn’t move if he doesn’t have to).
Four cases:

1. 0 cops incident with robber.
2. Exactly 1 cop incident with robber.
3. Exactly \(k \) cops incident with robber (\(1 < k < n-1 \)).
4. Exactly \(n-1 \) cops incident with robber.
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, \ldots, v_n\} \).
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, \ldots, v_n\} \). Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape.
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \{v_1, ..., v_n\}. Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2/2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \{v_1, ..., v_n\}. Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2 / 2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.

Case 2: exactly 1 cop incident
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, \ldots, v_n\} \). Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2/2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.

Case 2: exactly 1 cop incident
WLOG cop is on edge \(\{v, v_n\} \).
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, \ldots, v_n\} \). Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2/2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.

Case 2: exactly 1 cop incident
WLOG cop is on edge \(\{v, v_n\} \). Every other cop can be adjacent to at most 2 of the vertices in \(\{v_1, \ldots, v_{n-1}\} \) on the next cop move.
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, ..., v_n\} \). Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2 / 2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.

Case 2: exactly 1 cop incident
WLOG cop is on edge \(\{v, v_n\} \). Every other cop can be adjacent to at most 2 of the vertices in \(\{v_1, ..., v_{n-1}\} \) on the next cop move. Each of these vertices requires \(n-1 \) additional cops, so at least \((n-1)(n-1)/2 \) additional cops are necessary.
Hypercubes are not containable: Proof.

Case 1: 0 cops incident
After cops move, each cop can touch at most 2 of the vertices in \(\{v_1, ..., v_n\} \). Each one requires \(n \) cops that can move incident to it in order to prevent robber’s escape. So at least \(n^2/2 \) cops are necessary in order for the cops to win on their move after the robber’s turn.

Case 2: exactly 1 cop incident
WLOG cop is on edge \(\{v, v_n\} \). Every other cop can be adjacent to at most 2 of the vertices in \(\{v_1, ..., v_{n-1}\} \) on the next cop move. Each of these vertices requires \(n-1 \) additional cops, so at least \((n-1)(n-1)/2 \) additional cops are necessary.
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident.
WLOG, they’re at $\{v, v_{n-k+1}\}, \{v, v_{n-k+2}\}, \ldots, \{v, v_n\}$.
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n−1$ cops incident. WLOG, they’re at $\{v, v_{n−k+1}\}, \{v, v_{n−k+2}\}, \ldots, \{v, v_n\}$. To prevent escape to v_1, we need $n−1$ additional cops.
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident. WLOG, they’re at $\{v, v_{n-k+1}\}, \{v, v_{n-k+2}\}, \ldots, \{v, v_n\}$. To prevent escape to v_1, we need $n-1$ additional cops. To also prevent escape to v_2, we need an additional $n-3$ cops (two of the cops preventing escape to v_1 can simultaneously be used for this purpose).
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident.
WLOG, they’re at $\{v, v_{n-k+1}\}, \{v, v_{n-k+2}\}, \ldots, \{v, v_n\}$. To prevent escape to v_1, we need $n-1$ additional cops. To also prevent escape to v_2, we need an additional $n-3$ cops (two of the cops preventing escape to v_1 can simultaneously be used for this purpose).
This is already no less than $2n-2$.
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident.
WLOG, they’re at $\{v, v_{n-k+1}\}, \{v, v_{n-k+2}\}, \ldots, \{v, v_n\}$. To prevent escape to v_1, we need $n-1$ additional cops. To also prevent escape to v_2, we need an additional $n-3$ cops (two of the cops preventing escape to v_1 can simultaneously be used for this purpose).
This is already no less than $2n-2$.
Case 4: Exactly $n-1$ cops incident
Hypercubes are not containable: Proof.

Case 3: Exactly $1 < k < n-1$ cops incident.
WLOG, they’re at $\{v, v_{n-k+1}\}, \{v, v_{n-k+2}\}, \ldots, \{v, v_n\}$. To prevent escape to v_1, we need $n-1$ additional cops. To also prevent escape to v_2, we need an additional $n-3$ cops (two of the cops preventing escape to v_1 can simultaneously be used for this purpose).
This is already no less than $2n-2$.
Case 4: Exactly $n-1$ cops incident
An additional $n-1$ cops must be incident with robber’s one escape vertex.

□
Table of Contents

1. Background on Cops & Robbers
2. Preliminaries
3. Containability
4. Containment number
Hypercubes, continued

Proposition $\xi(Q^n) \leq (n^2)$ for all integers $n \geq 3$.

We can prove something stronger if we think about retracts.

Containment: a Cops & Robber Variation

Natasha Komarov
Proposition

\[\xi(Q_n) \leq \binom{n}{2} \text{ for all integers } n \geq 3. \]
Proposition

\[\xi(Q_n) \leq \left(\frac{n}{2} \right) \text{ for all integers } n \geq 3. \]

We can prove something stronger if we think about retracts.
Retracts

An induced subgraph $H \subset G$ is called a **retract** if there is a graph homomorphism $\phi : G \to H$ that restricts to the identity on H.
Retracts

An induced subgraph $H \subseteq G$ is called a **retract** if there is a graph homomorphism $\phi : G \to H$ that restricts to the identity on H.

Theorem

*If $H \subseteq G$ is a retract of G, then $\xi(H) \leq \xi(G)$.***
Retracts

An induced subgraph $H \subseteq G$ is called a **retract** if there is a graph homomorphism $\phi : G \to H$ that restricts to the identity on H.

Theorem

*If $H \subseteq G$ is a retract of G, then $\xi(H) \leq \xi(G)$.***

Proof idea: play a game on G and a “shadow game” on H, as determined by the retract.
Retracts

An induced subgraph $H \subseteq G$ is called a **retract** if there is a graph homomorphism $\phi : G \to H$ that restricts to the identity on H.

Theorem

If $H \subseteq G$ is a retract of G, then $\xi(H) \leq \xi(G)$.

Proof idea: play a game on G and a “shadow game” on H, as determined by the retract. When the game ends on G, the shadow game ends on H. □
Retracts

An induced subgraph $H \subset G$ is called a retract if there is a graph homomorphism $\phi : G \to H$ that restricts to the identity on H.

Theorem

If $H \subset G$ is a retract of G, then $\xi(H) \leq \xi(G)$.

Proof idea: play a game on G and a “shadow game” on H, as determined by the retract. When the game ends on G, the shadow game ends on H. □

The analogous result holds for Cops & Robber, too.
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \to H$.

Examples.
• Can retract K_3 onto K_2, but not cubically
• Can retract C_4 onto K_2 either as a cubical retract or not (either send both vertices outside the subgraph onto different vertices of K_2 or the same vertex of K_2)
• $Q_n + 1$ retracts cubically onto $Q_n \times \{0\} \sim Q_n$ by setting the last coordinate to 0.
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \rightarrow H$. H is a **cubical retract** of G if whenever $v \in V(G) \setminus V(H)$ is a vertex adjacent to $h \in H$, then we have $h = \phi(v)$.
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \rightarrow H$. H is a cubical retract of G if whenever $v \in V(G) \setminus V(H)$ is a vertex adjacent to $h \in H$, then we have $h = \phi(v)$.

Examples.
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \rightarrow H$. H is a **cubical retract** of G if whenever $v \in V(G) \setminus V(H)$ is a vertex adjacent to $h \in H$, then we have $h = \phi(v)$.

Examples.
- Can retract K_3 onto K_2, but not cubically
Cubical retracts

Let \(H \subset G \) be a retract under \(\phi : G \to H \). \(H \) is a **cubical retract** of \(G \) if whenever \(v \in V(G) \setminus V(H) \) is a vertex adjacent to \(h \in H \), then we have \(h = \phi(v) \).

Examples.

- Can retract \(K_3 \) onto \(K_2 \), but not cubically
- Can retract \(C_4 \) onto \(K_2 \) either as a cubical retract or not
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \rightarrow H$. H is a **cubical retract** of G if whenever $v \in V(G) \setminus V(H)$ is a vertex adjacent to $h \in H$, then we have $h = \phi(v)$.

Examples.

- Can retract K_3 onto K_2, but not cubically
- Can retract C_4 onto K_2 either as a cubical retract or not (either send both vertices outside the subgraph onto different vertices or the same vertex of K_2)
Cubical retracts

Let $H \subset G$ be a retract under $\phi : G \to H$. H is a **cubical retract** of G if whenever $v \in V(G) \setminus V(H)$ is a vertex adjacent to $h \in H$, then we have $h = \phi(v)$.

Examples.

- Can retract K_3 onto K_2, but not cubically
- Can retract C_4 onto K_2 either as a cubical retract or not (either send both vertices outside the subgraph onto different vertices or the same vertex of K_2)
- Q_{n+1} retracts cubically onto $Q^n \times \{0\} \cong Q^n$ by setting the last coordinate to 0.
Theorem

Let $H \subseteq G$ be a cubical retract of G under ϕ. Then

$$\xi(G) \leq \max\{\xi(H), \xi(G - H)\} + dd(G, H) + \Delta(H) - 1$$

where $dd(G, H) = \max_{x \in H}(d_G(v) - d_H(v))$ is the degree discrepancy of H.
Cubical retracts

Theorem

Let $H \subseteq G$ be a cubical retract of G under ϕ. Then

$$\xi(G) \leq \max\{\xi(H), \xi(G - H)\} + dd(G, H) + \Delta(H) - 1$$

where $dd(G, H) = \max_{x \in H}(d_G(v) - d_H(v))$ is the **degree discrepancy** of H.

Lemma

Suppose that we are playing a containment game on a graph G and that there are at least $c(G) + k - 1$ non-tail cops, then k new tail cops can be attached to R.

Containment: a Cops & Robber Variation

Natasha Komarov
Cubical retracts

Proof.

Let

\[m = dd(G, H) + \Delta(H) + c(H) - 2 \]

and

\[n = \max \{\xi(H), \xi(G - H)\} - c(H) + 1. \]

So we’re showing \(\xi(G) \leq m + n \).
Cubical retracts

Proof.
Let
\[m = dd(G, H) + \Delta(H) + c(H) - 2 \]
and
\[n = \max\{\xi(H), \xi(G - H)\} - c(H) + 1. \]
So we’re showing \(\xi(G) \leq m + n \).
Start with \(m + n \) cops.
Cubical retracts

Proof.
Let

\[m = dd(G, H) + \Delta(H) + c(H) - 2 \]

and

\[n = \max\{\xi(H), \xi(G - H)\} - c(H) + 1. \]

So we’re showing \(\xi(G) \leq m + n. \)
Start with \(m + n \) cops.
Phase 1: we use \(m \) of the cops to attach \(\Delta(H) + dd(G, H) - 1 \) tails to \(\phi(R) \) in \(H \) (by lemma).
Cubical retracts

Proof.
Let
\[m = dd(G, H) + \Delta(H) + c(H) - 2 \]
and
\[n = \max\{\xi(H), \xi(G - H)\} - c(H) + 1. \]

So we’re showing \(\xi(G) \leq m + n \).
Start with \(m + n \) cops.
Phase 1: we use \(m \) of the cops to attach \(\Delta(H) + dd(G, H) - 1 \) tails to \(\phi(R) \) in \(H \) (by lemma). Now there are
\[n + c(H) - 1 = \max\{\xi(H), \xi(G - H)\} \] non-tail cops left.
Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H.

Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H. If he leaves H, then the free $\max\{\xi(H), \xi(G - H)\}$ cops eventually contain him on $G - H$.

Note: if R ever moves from $G - H$ to H, he must move onto $\phi(R)$ (using the cubical property of the retract); we can fan out the $\text{dd}(G, H) + \Delta(H)$ tails on $\phi(R)$ to prevent R from moving to any vertex other than the vertex of $G - H$ he came from.

The cops from Phase 2 can pursue R as if he remained on the vertex he stood on before his move onto H.

Since there are at least $\xi(G - H)$ cops, they eventually contain the robber. □
Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H. If he leaves H, then the free $\max\{\xi(H), \xi(G - H)\}$ cops eventually contain him on $G - H$.

Note: if R ever moves from $G - H$ to H, he must move onto $\phi(R)$ (using the cubical property of the retract);
Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H. If he leaves H, then the free $\max\{\xi(H), \xi(G - H)\}$ cops eventually contain him on $G - H$.

Note: if R ever moves from $G - H$ to H, he must move onto $\phi(R)$ (using the cubical property of the retract); we can fan out the $dd(G, H) + \Delta(H) - 1$ tails on $\phi(R)$ to prevent R from moving to any vertex other than the vertex of $G - H$ he came from.
Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H. If he leaves H, then the free \(\max\{\xi(H), \xi(G - H)\} \) cops eventually contain him on $G - H$.

Note: if R ever moves from $G - H$ to H, he must move onto $\phi(R)$ (using the cubical property of the retract); we can fan out the $dd(G, H) + \Delta(H) - 1$ tails on $\phi(R)$ to prevent R from moving to any vertex other than the vertex of $G - H$ he came from. The cops from Phase 2 can pursue R as if he remained on the vertex he stood on before his move onto H.

□
Cubical retracts

Proof, cont’d.
Phase 2: these cops move until either the robber leaves H or they contain him on H. If he leaves H, then the free max\{$\xi(H), \xi(G - H)$\} cops eventually contain him on $G - H$.

Note: if R ever moves from $G - H$ to H, he must move onto $\phi(R)$ (using the cubical property of the retract); we can fan out the $dd(G, H) + \Delta(H) - 1$ tails on $\phi(R)$ to prevent R from moving to any vertex other than the vertex of $G - H$ he came from. The cops from Phase 2 can pursue R as if he remained on the vertex he stood on before his move onto H. Since there are at least $\xi(G - H)$ cops, they eventually contain the robber. \square
Cubical retracts

Corollary

\[\xi(Q_n) \leq \frac{n(n-1)}{2} \quad \text{for all } n \geq 3. \]
Cubical retracts

Corollary

\[\xi(Q_n) \leq \frac{n(n - 1)}{2} \quad \text{for all } n \geq 3. \]

Proof.

\(dd(Q_{n+1}, Q_n) = 1 \) and \(\Delta(Q_n) = n \), so

\[\xi(Q_{n+1}) \leq \xi(Q_n) + 1 + n - 1 = \xi(Q_n) + n. \]

Use \(\xi(Q_3) = 3 \) and induction to get the desired result. \(\square \)
More containment number results
Proposition

If G is a Δ-regular ($\Delta > 2$) graph with girth at least 5, then G is not containable.
Proposition

If G is a Δ-regular ($\Delta > 2$) graph with girth at least 5, then G is not containable.

Example: Petersen graph (containment number $= 4$)
Background on Cops & Robbers

Preliminaries

Containability

Containment number

More containment number results

Proposition

If G is a Δ-regular ($\Delta > 2$) graph with girth at least 5, then G is not containable.

Example: Petersen graph (containment number = 4)

Proposition

If G has girth at least 7 and is Δ-regular ($\Delta > 2$), then G is not containable by $\Delta + 1$ cops.
Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.

Proof sketch.

Lower bound: $\xi(G)$ cops play a Cops & Robber shadow game, with each cop staying on an endpoint of her Containment counterpart's edge; when the Containment game ends successfully for the cops, the Cops & Robber shadow game does too.

Upper bound: place a cop on each of the edges incident with each of the vertices in a dominating set of G. They can capture the robber in one step. □
More general result on containment number

Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.
More general result on containment number

Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.

Proof sketch.
More general result on containment number

Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.

Proof sketch.

Lower bound: $\xi(G)$ cops play a Cops & Robber shadow game, with each cop staying on an endpoint of her Containment counterpart’s edge;
More general result on containment number

Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G)\gamma(G)$.

Proof sketch.

Lower bound: $\xi(G)$ cops play a Cops & Robber shadow game, with each cop staying on an endpoint of her Containment counterpart’s edge; when the Containment game ends successfully for the cops, the Cops & Robber shadow game does too.
More general result on containment number

Theorem

For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.

Proof sketch.
Lower bound: $\xi(G)$ cops play a Cops & Robber shadow game, with each cop staying on an endpoint of her Containment counterpart’s edge; when the Containment game ends successfully for the cops, the Cops & Robber shadow game does too.

Upper bound: place a cop on each of the edges incident with each of the vertices in a dominating set of G.
More general result on containment number

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all G, $c(G) \leq \xi(G) \leq \Delta(G) \gamma(G)$.</td>
</tr>
</tbody>
</table>

Proof sketch.

Lower bound: $\xi(G)$ cops play a Cops & Robber shadow game, with each cop staying on an endpoint of her Containment counterpart’s edge; when the Containment game ends successfully for the cops, the Cops & Robber shadow game does too.

Upper bound: place a cop on each of the edges incident with each of the vertices in a dominating set of G. They can capture the robber in one step. □
Containment number conjecture

Conjecture

For all graphs G, $\xi(G) \leq \Delta(G)c(G)$.
Containment number conjecture

Conjecture

For all graphs \(G \), \(\xi(G) \leq \Delta(G)c(G) \).

This conjecture does hold “on average” in many random graphs [8].
Containment number conjecture

<table>
<thead>
<tr>
<th>Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all graphs G, $\xi(G) \leq \Delta(G)c(G)$.</td>
</tr>
</tbody>
</table>

This conjecture does hold “on average” in many random graphs [8].

$c(Q_n) = \lceil \frac{n+1}{2} \rceil$ (see [6]), so hypercubes provide an infinite class of examples where $\xi(G)$ is strictly less than $\Delta(G)c(G)$.
Other things to think about
Other things to think about

- Characterization of containable graphs.
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \square K_2$ containable?
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \Box K_2$ containable? What about $G \Box H$ for containable graphs G and H?
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \square K_2$ containable? What about $G \square H$ for containable graphs G and H?
- What happens if the game is played on non-reflexive graphs?
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \square K_2$ containable? What about $G \square H$ for containable graphs G and H?
- What happens if the game is played on non-reflexive graphs? $\xi(T) = 1$ for all trees
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \Box K_2$ containable? What about $G \Box H$ for containable graphs G and H?
- What happens if the game is played on non-reflexive graphs? $\xi(T) = 1$ for all trees and the Petersen graph becomes containable.
Other things to think about

- Characterization of containable graphs.
- For what containable graphs G is $G \square K_2$ containable? What about $G \square H$ for containable graphs G and H?
- What happens if the game is played on non-reflexive graphs? $\xi(T) = 1$ for all trees and the Petersen graph becomes containable. Non-reflexive containability should probably be defined as $\xi(G) = \delta(G)$.
Thank you!
References

