Capture Time in Variants of Cops \& Robbers Games

Natasha Komarov

Dartmouth College

Thesis Defense
July 30, 2013

Table of Contents
(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Table of Contents

(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Set-up

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler)

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.
- Capture occurs when cop and robber occupy same vertex at same time.

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.
- Capture occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.
- Capture occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.
- Capture occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.
- A move consists of a step by the cop followed by a step by the robber

Set-up

- Games are played on G : a connected, undirected, simple graph on n vertices.
- Two players:
- pursuer (a.k.a. cop/hunter)
- evader (a.k.a. robber/drunk/mole/sitter/gambler) move vertex to vertex on G.
- Capture occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.
- A move consists of a step by the cop followed by a step by the robber (like chess).

Original game

Original game

- Introduced by Nowakowski \& Winkler [5] and (independently) Quilliot [7].

Original game

- Introduced by Nowakowski \& Winkler [5] and (independently) Quilliot [7].
- Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.

Original game

- Introduced by Nowakowski \& Winkler [5] and (independently) Quilliot [7].
- Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.
- Graphs on which a cop can win (i.e. capture) in finite time are called cop-win.

Original game

- Introduced by Nowakowski \& Winkler [5] and (independently) Quilliot [7].
- Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.
- Graphs on which a cop can win (i.e. capture) in finite time are called cop-win.
- Game takes no more than $n-4$ moves on cop-win graphs with $n \geq 7[1,3]$. (Note: original game can't take more than n^{2} on any graph, including directed graphs.)

Table of Contents

(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Game set-up

Game set-up

- Suggested by Ross Churchley [4].

Game set-up

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.

Game set-up

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.

Game set-up

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.
- Cop always wins (probability 1)

Game set-up

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.
- Cop always wins (probability 1); how long does it take (on average)?

Game set-up

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.
- Cop always wins (probability 1); how long does it take (on average)?

Theorem

On a connected, undirected, simple graph on n vertices, a cop can capture a drunk in expected time $n+o(n)$.

Is that obvious?

Is that obvious?
[Spoiler: it isn't.]

Is that obvious?

[Spoiler: it isn't.]
Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)

Is that obvious?

[Spoiler: it isn't.]
Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)... fails!

Is that obvious?

[Spoiler: it isn't.]
Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)... fails!

Example. "Ladder to the Basement"

The ladder graph, $\boldsymbol{L}_{\boldsymbol{8}}$

Retargeting

Retargeting

- Cop's problem was retargeting too often: cop is made indecisive by an indecisive drunk.

Retargeting

- Cop's problem was retargeting too often: cop is made indecisive by an indecisive drunk.
- How about retargeting less often?

Retargeting

- Cop's problem was retargeting too often: cop is made indecisive by an indecisive drunk.
- How about retargeting less often?

Lemma

The probability that a random walk will "mess up" during 4 consecutive steps is at least $\frac{n^{-2 / 3}}{4}$.

Retargeting

Lemma

The probability that a random walk will"mess up" during 4 consecutive steps is at least $\frac{n^{-2 / 3}}{4}$.

- So if cop and drunk start d apart, takes $4\left(4 n^{2 / 3}\right)(d-3)$ moves on average to get down to distance 3 .

Retargeting

Lemma

The probability that a random walk will"mess up" during 4 consecutive steps is at least $\frac{n^{-2 / 3}}{4}$.

- So if cop and drunk start d apart, takes $4\left(4 n^{2 / 3}\right)(d-3)$ moves on average to get down to distance 3 .
- After that, greedy algorithm only takes Δ more steps on average ($\Delta=$ highest degree).

Four-stage Strategy

- d can be as big as $n-1$, and $4\left(4 n^{2 / 3}\right)((n-1)-3)$ is too big to get the $n+o(n)$ bound.

Four-stage Strategy

- d can be as big as $n-1$, and $4\left(4 n^{2 / 3}\right)((n-1)-3)$ is too big to get the $n+o(n)$ bound.
- Need to do something else to get closer quicker!

Four-stage Strategy

- d can be as big as $n-1$, and $4\left(4 n^{2 / 3}\right)((n-1)-3)$ is too big to get the $n+o(n)$ bound.
- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival.

Four-stage Strategy

- d can be as big as $n-1$, and $4\left(4 n^{2 / 3}\right)((n-1)-3)$ is too big to get the $n+o(n)$ bound.
- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival. What's the distance when that's done?

Four-stage Strategy

- d can be as big as $n-1$, and $4\left(4 n^{2 / 3}\right)((n-1)-3)$ is too big to get the $n+o(n)$ bound.
- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival. What's the distance when that's done?
Lemma
Expected distance after Stage 1 is $O^{*}(\sqrt{n})$.

Four-stage Strategy

Lemma

Expected distance after Stage 1 is $O^{*}(\sqrt{n})$.

- This is a corollary of the Varopoulos-Carne bound $[6,8]$:

Theorem

Let $P=(p(x, y))_{x, y \in V(G)}$ be the transition matrix associated with a simple random walk $\left\{x_{0}, x_{1}, \ldots\right\}$ on G. Then

$$
p^{t}(x, y) \leq \sqrt{e} \sqrt{\frac{\operatorname{deg}(y)}{\operatorname{deg}(x)}} \exp \left(-\frac{(d(x, y)-1)^{2}}{2(t-1)}\right)
$$

where $p^{t}(x, y)=\mathbb{P}\left(x_{t}=y \mid x_{0}=x\right)$.

Four-stage Strategy

- Stage 2: repeat.

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$
- Stage 2: $O^{*}(\sqrt{n})$

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$
- Stage 2: $O^{*}(\sqrt{n})$
- Stage 3: $4\left(4 n^{2 / 3}\right)\left(O^{*}(\sqrt[4]{n})-3\right)=O^{*}\left(n^{11 / 12}\right)$.

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$
- Stage 2: $O^{*}(\sqrt{n})$
- Stage 3: $4\left(4 n^{2 / 3}\right)\left(O^{*}(\sqrt[4]{n})-3\right)=O^{*}\left(n^{11 / 12}\right)$.
- Stage 4: $\leq \Delta$

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$
- Stage 2: $O^{*}(\sqrt{n})$
- Stage 3: $4\left(4 n^{2 / 3}\right)\left(O^{*}(\sqrt[4]{n})-3\right)=O^{*}\left(n^{11 / 12}\right)$.
- Stage 4: $\leq \Delta$
- Graph theory fun fact: $\operatorname{diam}(G)+\Delta \leq n+1$.

Four-stage Strategy

- Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^{*}(\sqrt[4]{n})$.

- Stage 3: retarget every 4 steps until distance is at most 4 , then
- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
- Stage 1: $\leq \operatorname{diam}(G)$
- Stage 2: $O^{*}(\sqrt{n})$
- Stage 3: $4\left(4 n^{2 / 3}\right)\left(O^{*}(\sqrt[4]{n})-3\right)=O^{*}\left(n^{11 / 12}\right)$.
- Stage 4: $\leq \Delta$
- Graph theory fun fact: $\operatorname{diam}(G)+\Delta \leq n+1$.
- So total time is at most $n+o(n)$.

Table of Contents

(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Background

- Sitter is immobile: picks a vertex and remains there until caught.

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be $n-1$ on a tree, and is between $|E(G)| / 2$ and $|E(G)|$ in general. [2]

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be $n-1$ on a tree, and is between $|E(G)| / 2$ and $|E(G)|$ in general. [2]
- We look at a cop using depth first search (DFS) and find

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be $n-1$ on a tree, and is between $|E(G)| / 2$ and $|E(G)|$ in general. [2]
- We look at a cop using depth first search (DFS) and find:
- DFS is an optimal strategy for the cop on a tree.

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be $n-1$ on a tree, and is between $|E(G)| / 2$ and $|E(G)|$ in general. [2]
- We look at a cop using depth first search (DFS) and find:
- DFS is an optimal strategy for the cop on a tree.
- Expected capture time is strictly less than $n-1$ on any non-tree using DFS.

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be $n-1$ on a tree, and is between $|E(G)| / 2$ and $|E(G)|$ in general. [2]
- We look at a cop using depth first search (DFS) and find:
- DFS is an optimal strategy for the cop on a tree.
- Expected capture time is strictly less than $n-1$ on any non-tree using DFS.
- Expected capture time is at least $\frac{n+1}{2}$ on any graph using DFS.

Table of Contents

(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Cop vs. Gambler

- Gambler: not constrained by edges, but must pick a gamble (probability distribution on the vertices of G) and stick to it.

Cop vs. Gambler

- Gambler: not constrained by edges, but must pick a gamble (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.

Cop vs. Gambler

- Gambler: not constrained by edges, but must pick a gamble (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

Cop vs. Gambler

- Gambler: not constrained by edges, but must pick a gamble (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

Theorem

The cop vs. gambler game takes expected time exactly n on any (connected, undirected, simple) graph.

Cop vs. Gambler

- Gambler: not constrained by edges, but must pick a gamble (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

Theorem

The cop vs. gambler game takes expected time exactly n on any (connected, undirected, simple) graph.

Bonus: this remains true whether the cop gets to choose her initial position or not.

Table of Contents

(1) Introduction
(2) Cop vs. Drunk
(3) Cop vs. Sitter
(4) Cop vs. Gambler
(5) Hunter vs. Mole

Game set-up

- Hunter: not constrained by edges but plays in the dark.

Game set-up

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.

Game set-up

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.
- Players move simultaneously.

Game set-up

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.
- Players move simultaneously.
- On what graphs can hunter guarantee capture of mole in bounded time (call these hunter-win)?

Game set-up

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.
- Players move simultaneously.
- On what graphs can hunter guarantee capture of mole in bounded time (call these hunter-win)? (Equivalently: hunter plays against genius, prescient mole who always makes the moves guaranteed to maximize capture time.)

Game set-up

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.
- Players move simultaneously.
- On what graphs can hunter guarantee capture of mole in bounded time (call these hunter-win)? (Equivalently: hunter plays against genius, prescient mole who always makes the moves guaranteed to maximize capture time.)

Theorem

A graph is hunter-win if and only if it is a lobster.

Characterization

Definition

A lobster is a tree containing a path P such that all vertices are within distance 2 of P.

Characterization

Definition

A lobster is a tree containing a path P such that all vertices are within distance 2 of P.

A lobster.

Not a lobster.

Characterization

Lemma

Lobsters are hunter-win.

Characterization

Lemma
Lobsters are hunter-win.
Proof

Characterization

Lemma
Lobsters are hunter-win.
Proof by picture.

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.

Define an odd (resp. even) mole to be a mole who starts at an odd (resp. even) distance from the marked vertex.

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.

Define an odd (resp. even) mole to be a mole who starts at an odd (resp. even) distance from the marked vertex.

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $1^{\text {st }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $2^{\text {nd }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $3^{\text {rd }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $4^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $5^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $6^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $7^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $8^{t h}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ even mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $8^{t h}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $9^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $10^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $11^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.After hunter's $12^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $13^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $14^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture. After hunter's $15^{\text {th }}$ step:

Orange vertex $=$ hunter's position
Purple vertex $=$ odd mole's possible positions

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.

This is an optimal strategy for the hunter, by the way.

Characterization

Lemma

Lobsters are hunter-win.
Proof by picture.

Q.E.D.!

Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

- G is the three-legged spider.

Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

- G is the three-legged spider.
- G is the cycle C_{n}.

Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

- G is the three-legged spider.
- G is the cycle C_{n}.
- G contains a mole-win subgraph.

References

A. Bonato, P. Golovach, G. Hahn, and J. Kratochvil, The capture time of a graph, Discrete Math. 309 (2009) 5588-5595.
S. Gal, Search games with mobile and immobile hider, SIAM J. Control Ef Opt. 17 (1979) 99-122.
T. Gavenčiak, Games on graphs, Charles University, Prague (2007).
G. MacGillivray, private communication, ca. May 2011.
R. J. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983), 235-239.
R. Peyre, A probabilistic approach to Carne's bound, Potential Anal. 29 (2008) \#1, 17-36.
A. Quilliot, Thesis, Homomorphismes, points fixes, rétractations et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques, Université de Paris VI (1983).
N. Th. Varopoulos, Long range estimations for Markov chains, Bull. Sci. Math. 109 (1985) 225-252.

Thank you!

Table of Contents

(6) Additional Slides

Lemma

Let G be any graph and let $x_{0} \in V(G)$ be any vertex in G. Let $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ be any random walk on G beginning at x_{0}. Then $\mathbb{P}\left(d\left(x_{0}, x_{4}\right)<4\right) \geq 1 / s$, where $s=4 n^{2 / 3}$.

Lemma

Expected distance after Stage 1 is less than $1+\sqrt{n(1+5 \log n)}$.

Lemma

Expected distance after Stage 2 is less than $(5 \log n)^{3 / 4} n^{1 / 4}$.

A quadratic digraph

Define a $R(k)$ to be a reflexive directed graph on $n=2 k+1$ vertices consisting of:

- an "outer ring" comprised of a (counterclockwise)-directed k-cycle
- an "inner ring" comprised of a (counterclockwise)-directed ($k-1$)-cycle
- arcs from a vertex in the inner ring to a vertex in the outer ring configured such that $k-2$ vertices in the inner ring are incident with one such arc, and 1 vertex in the inner ring is incident with two such arcs
- an "internal vertex" (C) that is out-directed to every vertex in the inner ring
- an "external vertex" (R) incident with two arcs

The graph $R(7)$

The graph $R(7)$

Lemma
$R(k)$ is cop-win for all k and the capture time is $\Theta\left(n^{2}\right)$.

