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Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Set-up

• Games are played on G: a connected, undirected, simple
graph on n vertices.

• Two players:
• pursuer (a.k.a. cop/hunter)
• evader (a.k.a. robber/drunk/mole/sitter/gambler)

move vertex to vertex on G.

• Capture occurs when cop and robber occupy same vertex
at same time.

• The cop’s goal is to capture the robber in the minimal
possible number of steps.

• The robber’s goal is to evade capture as long as possible.

• A move consists of a step by the cop followed by a step by
the robber (like chess).
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Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Original game

• Introduced by Nowakowski & Winkler [5] and
(independently) Quilliot [7].

• Cop and robber move alternately from vertex to adjacent
vertex, with full information about each other’s positions.

• Graphs on which a cop can win (i.e. capture) in finite time
are called cop-win.

• Game takes no more than n−4 moves on cop-win graphs
with n ≥ 7 [1, 3]. (Note: original game can’t take more
than n2 on any graph, including directed graphs.)
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Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Game set-up

• Suggested by Ross Churchley [4].

• Evader is now a drunk: random walker.

• Cop and drunk still move alternately with full information.

• Cop always wins (probability 1); how long does it take (on
average)?

Theorem

On a connected, undirected, simple graph on n vertices, a cop
can capture a drunk in expected time n+o(n).
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Is that obvious?

[Spoiler: it isn’t.]

Perhaps most obvious cop strategy: greedy algorithm (i.e.
minimize distance at each step)... fails!

Example. “Ladder to the Basement” }}The ladder graph, L8 The complete bipartite graph, K8,8
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Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Retargeting

• Cop’s problem was retargeting too often: cop is made
indecisive by an indecisive drunk.

• How about retargeting less often?

Lemma

The probability that a random walk will “mess up” during 4

consecutive steps is at least
n−2/3

4
.
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Retargeting

Lemma

The probability that a random walk will “mess up” during 4

consecutive steps is at least
n−2/3

4
.

• So if cop and drunk start d apart, takes 4(4n2/3)(d− 3)
moves on average to get down to distance 3.

• After that, greedy algorithm only takes ∆ more steps on
average (∆ = highest degree).
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Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• d can be as big as n−1, and 4(4n2/3)((n−1)− 3) is too big
to get the n + o(n) bound.

• Need to do something else to get closer quicker!

• Stage 1: retarget upon arrival. What’s the distance when
that’s done?

Lemma

Expected distance after Stage 1 is O∗(
√
n).

10 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• d can be as big as n−1, and 4(4n2/3)((n−1)− 3) is too big
to get the n + o(n) bound.

• Need to do something else to get closer quicker!

• Stage 1: retarget upon arrival. What’s the distance when
that’s done?

Lemma

Expected distance after Stage 1 is O∗(
√
n).

10 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• d can be as big as n−1, and 4(4n2/3)((n−1)− 3) is too big
to get the n + o(n) bound.

• Need to do something else to get closer quicker!

• Stage 1: retarget upon arrival.

What’s the distance when
that’s done?

Lemma

Expected distance after Stage 1 is O∗(
√
n).

10 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• d can be as big as n−1, and 4(4n2/3)((n−1)− 3) is too big
to get the n + o(n) bound.

• Need to do something else to get closer quicker!

• Stage 1: retarget upon arrival. What’s the distance when
that’s done?

Lemma

Expected distance after Stage 1 is O∗(
√
n).

10 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• d can be as big as n−1, and 4(4n2/3)((n−1)− 3) is too big
to get the n + o(n) bound.

• Need to do something else to get closer quicker!

• Stage 1: retarget upon arrival. What’s the distance when
that’s done?

Lemma

Expected distance after Stage 1 is O∗(
√
n).

10 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

Lemma

Expected distance after Stage 1 is O∗(
√
n).

• This is a corollary of the Varopoulos-Carne bound [6, 8]:

Theorem

Let P = (p(x, y))x,y∈V (G) be the transition matrix associated
with a simple random walk {x0, x1, . . . } on G. Then

pt(x, y) ≤
√
e

√
deg(y)

deg(x)
exp

(
−(d(x, y)− 1)2

2(t− 1)

)
where pt(x, y) = P(xt=y|x0=x).

11 / 23



Introduction Cop vs. Drunk Cop vs. Sitter Cop vs. Gambler Hunter vs. Mole

Four-stage Strategy

• Stage 2: repeat.

Similar argument yields:

Lemma

Expected distance after Stage 2 is O∗( 4
√
n).

• Stage 3: retarget every 4 steps until distance is at most 4,
then

• Stage 4: greedy algorithm until caught.

• How long do the four stages take?
• Stage 1: ≤ diam(G)
• Stage 2: O∗(

√
n)

• Stage 3: 4(4n2/3)(O∗( 4
√
n)− 3) = O∗(n11/12).

• Stage 4: ≤ ∆

• Graph theory fun fact: diam(G) + ∆ ≤ n + 1.

• So total time is at most n + o(n).
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n)

• Stage 3: 4(4n2/3)(O∗( 4
√
n)− 3) = O∗(n11/12).

• Stage 4: ≤ ∆

• Graph theory fun fact: diam(G) + ∆ ≤ n + 1.

• So total time is at most n + o(n).
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Background

• Sitter is immobile: picks a vertex and remains there until
caught.

• Cop can’t see the sitter.

• The expected capture time is known to be n−1 on a tree,
and is between |E(G)|/2 and |E(G)| in general. [2]

• We look at a cop using depth first search (DFS) and find:
• DFS is an optimal strategy for the cop on a tree.
• Expected capture time is strictly less than n−1 on any

non-tree using DFS.
• Expected capture time is at least n+1

2 on any graph using
DFS.
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Cop vs. Gambler

• Gambler: not constrained by edges, but must pick a
gamble (probability distribution on the vertices of G) and
stick to it.

• Cop: constrained by edges but knows gambler’s gamble.

• How long does it take cop to capture gambler (on average)?

Theorem

The cop vs. gambler game takes expected time exactly n on any
(connected, undirected, simple) graph.

Bonus: this remains true whether the cop gets to choose her
initial position or not.
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Game set-up

• Hunter: not constrained by edges but plays in the dark.

• Mole: constrained by edges and must move, but can see
hunter.

• Players move simultaneously.

• On what graphs can hunter guarantee capture of mole in
bounded time (call these hunter-win)? (Equivalently:
hunter plays against genius, prescient mole who always
makes the moves guaranteed to maximize capture time.)

Theorem

A graph is hunter-win if and only if it is a lobster.
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Characterization

Definition

A lobster is a tree containing a path P such that all vertices
are within distance 2 of P .

A lobster. Not a lobster.
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Characterization

Lemma

Lobsters are hunter-win.

Proof by picture.

Define an odd (resp. even) mole to be a mole who starts at
an odd (resp. even) distance from the marked vertex.
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Characterization

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter’s 1st step:

Orange vertex = hunter’s position
Purple vertex = even mole’s possible positions
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Lemma
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Characterization

Lemma

Lobsters are hunter-win.

Proof by picture.

This is an optimal strategy for the hunter, by the way.
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Characterization

Lemma

Lobsters are hunter-win.

Proof by picture.

Q.E.D.!
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Characterization

Lemma

A graph G is a lobster if and only if it is a tree that doesn’t
contain the three-legged spider:

Lemma

A graph G is mole-win if:

• G is the three-legged spider.

• G is the cycle Cn.

• G contains a mole-win subgraph.
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Lemma

Let G be any graph and let x0 ∈ V (G) be any vertex in G. Let
{x0, x1, x2, . . . } be any random walk on G beginning at x0.
Then P(d(x0, x4) < 4) ≥ 1/s, where s = 4n2/3.
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Lemma

Expected distance after Stage 1 is less than 1+
√
n(1+5 log n).
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Lemma

Expected distance after Stage 2 is less than (5 log n)3/4n1/4.
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A quadratic digraph

Define a R(k) to be a reflexive directed graph on n = 2k+1
vertices consisting of:

• an “outer ring” comprised of a (counterclockwise)-directed
k-cycle

• an “inner ring” comprised of a (counterclockwise)-directed
(k−1)-cycle

• arcs from a vertex in the inner ring to a vertex in the outer
ring configured such that k−2 vertices in the inner ring are
incident with one such arc, and 1 vertex in the inner ring is
incident with two such arcs

• an “internal vertex” (C) that is out-directed to every
vertex in the inner ring

• an “external vertex” (R) incident with two arcs
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The graph R(7)

Lemma

R(k) is cop-win for all k and the capture time is Θ(n2).
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The graph R(7)

Lemma

R(k) is cop-win for all k and the capture time is Θ(n2).
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