

Capture Time in Variants of Cops & Robbers Games

Natasha Komarov

Dartmouth College

Thesis Defense July 30, 2013

Table of Contents

- 1 Introduction
- **2** Cop vs. Drunk
- **3** Cop vs. Sitter
- 4 Cop vs. Gambler
- **5** Hunter vs. Mole

Table of Contents

1 Introduction

- **2** Cop vs. Drunk
- **3** Cop vs. Sitter
- 4 Cop vs. Gambler
- **6** Hunter vs. Mole

Introduction	Cop vs. Drunk		

Set-up

Introduction	Cop vs. Drunk		
Set-up			

• Games are played on G: a connected, undirected, simple graph on n vertices.

Introduction	Cop vs. Drunk		
Set-up			

• Games are played on G: a connected, undirected, simple graph on n vertices.

3 / 23

• Two players:

Introduction	Cop vs. Drunk		
Set-up			
a		~	

• Games are played on G: a connected, undirected, simple graph on n vertices.

・ロト ・ 日 ・ ・ ヨト ・ ヨト ・ シーマー・ つく (?)

- Two players:
 - pursuer (a.k.a. cop/hunter)

Introduction	Cop vs. Drunk			
Set-up				
- Ca	man and mlared	on C. a compa	atad undinastad	aimanla

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - \bullet evader (a.k.a. robber/drunk/mole/sitter/gambler)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Cop vs. Drunk			
Set-up				
• Ga	mes are played	on C : a connect	cted undirected	simple

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - \bullet evader (a.k.a. robber/drunk/mole/sitter/gambler)

3 / 23

move vertex to vertex on G.

Introduction	Cop vs. Drunk	Cop vs. Sitter	Cop vs. Gambler	Hunter vs. Mole
Set-up				
a		~		

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - evader (a.k.a. robber/drunk/mole/sitter/gambler)

• **Capture** occurs when cop and robber occupy same vertex at same time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Cop vs. Drunk	Cop vs. Sitter	Cop vs. Gambler	Hunter vs. Mole
Set-up				

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - \bullet evader (a.k.a. robber/drunk/mole/sitter/gambler)

• **Capture** occurs when cop and robber occupy same vertex at same time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3/23

• The cop's goal is to capture the robber in the minimal possible number of steps.

Introduction	Cop vs. Drunk	Cop vs. Sitter	Cop vs. Gambler	Hunter vs. Mole
Set-up				

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - \bullet evader (a.k.a. robber/drunk/mole/sitter/gambler)

- **Capture** occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のく⊙

Introduction	Cop vs. Drunk	Cop vs. Sitter	Cop vs. Gambler	Hunter vs. Mole
Set-up				

- Games are played on G: a connected, undirected, simple graph on n vertices.
- Two players:
 - pursuer (a.k.a. cop/hunter)
 - evader (a.k.a. robber/drunk/mole/sitter/gambler)

- **Capture** occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.
- A **move** consists of a step by the **cop** followed by a step by the **robber**

Introduction	Cop vs. Drunk	Cop vs. Sitter	Cop vs. Gambler	Hunter vs. Mole
Set-up				

- Games are played on G: a connected, undirected, simple graph on n vertices.
 - Two players:
 - pursuer (a.k.a. cop/hunter)
 - evader (a.k.a. robber/drunk/mole/sitter/gambler)

- **Capture** occurs when cop and robber occupy same vertex at same time.
- The cop's goal is to capture the robber in the minimal possible number of steps.
- The robber's goal is to evade capture as long as possible.
- A move consists of a step by the cop followed by a step by the robber (like chess).

Original game

4 ロ ト 4 部 ト 4 書 ト 毛 声 三 つ へ で
4 / 23

• Introduced by Nowakowski & Winkler [5] and (independently) Quilliot [7].

- Introduced by Nowakowski & Winkler [5] and (independently) Quilliot [7].
- Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.

Introduction	Cop vs. Drunk		
Original	game		

- Introduced by Nowakowski & Winkler [5] and (independently) Quilliot [7].
- Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.
- Graphs on which a cop can win (i.e. capture) in finite time are called **cop-win**.

- - Introduced by Nowakowski & Winkler [5] and (independently) Quilliot [7].
 - Cop and robber move alternately from vertex to adjacent vertex, with full information about each other's positions.
 - Graphs on which a cop can win (i.e. capture) in finite time are called **cop-win**.
 - Game takes no more than n-4 moves on cop-win graphs with $n \ge 7$ [1, 3]. (Note: original game can't take more than n^2 on any graph, including directed graphs.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Table of Contents

1 Introduction

2 Cop vs. Drunk

3 Cop vs. Sitter

4 Cop vs. Gambler

5 Hunter vs. Mole

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Game set-up

<ロ > < 部 > < 書 > < 書 > 三 = の Q (~ 6 / 23

	Cop vs. Drunk		
Game se	t-up		

• Suggested by Ross Churchley [4].

	Cop vs. Drunk		
Game se	t-up		

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.

	Cop vs. Drunk		
Game set	t-up		

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.

	Cop vs. Drunk		
Game se	t-up		

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.

・ロト・西ト・西ト・西ト 山口 ろくの

6 / 23

• Cop always wins (probability 1)

	Cop vs. Drunk		
Game se	t-up		

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.
- Cop always wins (probability 1); how long does it take (on average)?

- Suggested by Ross Churchley [4].
- Evader is now a drunk: random walker.
- Cop and drunk still move alternately with full information.
- Cop always wins (probability 1); how long does it take (on average)?

Theorem

On a connected, undirected, simple graph on n vertices, a cop can capture a drunk in expected time n+o(n).

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のく⊙

Is that obvious?

<ロト < 部ト < 目ト < 目ト 三日 のへで 7 / 23

Is that obvious?

[Spoiler: it isn't.]

[Spoiler: it isn't.]

Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)

7 / 23

[Spoiler: it isn't.]

Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)... fails!

[Spoiler: it isn't.]

Perhaps most obvious cop strategy: greedy algorithm (i.e. minimize distance at each step)... fails!

Example. "Ladder to the Basement"

Retargeting

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 通 目 の Q (や
8 / 23

• Cop's problem was **retargeting** too often: cop is made indecisive by an indecisive drunk.

• Cop's problem was **retargeting** too often: cop is made indecisive by an indecisive drunk.

8 / 23

• How about retargeting less often?

Retargeting

- Cop's problem was **retargeting** too often: cop is made indecisive by an indecisive drunk.
- How about retargeting less often?

Lemma

The probability that a random walk will "mess up" during 4 consecutive steps is at least $\frac{n^{-2/3}}{4}$.

(日) (四) (日) (日) (日)

Retargeting

Lemma

The probability that a random walk will "mess up" during 4 consecutive steps is at least $\frac{n^{-2/3}}{4}$.

• So if cop and drunk start d apart, takes $4(4n^{2/3})(d-3)$ moves on average to get down to distance 3.

9 / 23

Retargeting

Lemma

The probability that a random walk will "mess up" during 4 consecutive steps is at least $\frac{n^{-2/3}}{4}$.

- So if cop and drunk start d apart, takes $4(4n^{2/3})(d-3)$ moves on average to get down to distance 3.
- After that, greedy algorithm only takes Δ more steps on average (Δ = highest degree).

• d can be as big as n-1, and $4(4n^{2/3})((n-1)-3)$ is too big to get the n + o(n) bound.

• d can be as big as n-1, and $4(4n^{2/3})((n-1)-3)$ is too big to get the n + o(n) bound.

《日》 《國》 《日》 《日》 《日》

10 / 23

• Need to do something else to get closer quicker!

• d can be as big as n-1, and $4(4n^{2/3})((n-1)-3)$ is too big to get the n + o(n) bound.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival.

- d can be as big as n-1, and $4(4n^{2/3})((n-1)-3)$ is too big to get the n + o(n) bound.
- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival. What's the distance when that's done?

- d can be as big as n-1, and $4(4n^{2/3})((n-1)-3)$ is too big to get the n + o(n) bound.
- Need to do something else to get closer quicker!
- Stage 1: retarget upon arrival. What's the distance when that's done?

10 / 23

Lemma

Expected distance after Stage 1 is $O^*(\sqrt{n})$.

Lemma

Expected distance after Stage 1 is $O^*(\sqrt{n})$.

• This is a corollary of the Varopoulos-Carne bound [6, 8]:

Theorem

Let $P = (p(x, y))_{x,y \in V(G)}$ be the transition matrix associated with a simple random walk $\{x_0, x_1, ...\}$ on G. Then

$$p^t(x,y) \le \sqrt{e} \sqrt{\frac{\deg(y)}{\deg(x)}} \exp\left(-\frac{(d(x,y)-1)^2}{2(t-1)}\right)$$

11 / 23

where $p^t(x, y) = \mathbb{P}(x_t = y | x_0 = x)$.

Cop vs. Drunk		

• Stage 2: repeat.

	Cop vs. Drunk		
Four-stag	e Strategy		

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

	Cop vs. Drunk		
Four-stag	ge Strategy		

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

	Cop vs. Drunk		
Four-stag	ge Strategy		

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

12 / 23

• Stage 4: greedy algorithm until caught.

	Cop vs. Drunk		
Four-sta	ge Strategy		

- Four-stage Strategy
 - Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?

	Cop vs. Drunk		
Four star	ro Stratory		

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$
 - Stage 2: $O^*(\sqrt{n})$

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$
 - Stage 2: $O^*(\sqrt{n})$
 - Stage 3: $4(4n^{2/3})(O^*(\sqrt[4]{n}) 3) = O^*(n^{11/12}).$

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$
 - Stage 2: $O^*(\sqrt{n})$
 - Stage 3: $4(4n^{2/3})(O^*(\sqrt[4]{n}) 3) = O^*(n^{11/12}).$
 - Stage 4: $\leq \Delta$

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$
 - Stage 2: $O^*(\sqrt{n})$
 - Stage 3: $4(4n^{2/3})(O^*(\sqrt[4]{n}) 3) = O^*(n^{11/12}).$
 - Stage 4: $\leq \Delta$
- Graph theory fun fact: $\operatorname{diam}(G) + \Delta \leq n + 1$.

• Stage 2: repeat. Similar argument yields:

Lemma

Expected distance after Stage 2 is $O^*(\sqrt[4]{n})$.

• Stage 3: retarget every 4 steps until distance is at most 4, then

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

- Stage 4: greedy algorithm until caught.
- How long do the four stages take?
 - Stage 1: $\leq \operatorname{diam}(G)$
 - Stage 2: $O^*(\sqrt{n})$
 - Stage 3: $4(4n^{2/3})(O^*(\sqrt[4]{n}) 3) = O^*(n^{11/12}).$
 - Stage 4: $\leq \Delta$
- Graph theory fun fact: $\operatorname{diam}(G) + \Delta \leq n + 1$.
- So total time is at most n + o(n).

Table of Contents

1 Introduction

2 Cop vs. Drunk

3 Cop vs. Sitter

4 Cop vs. Gambler

6 Hunter vs. Mole

<ロト < 部ト < 目ト < 目ト 三国 のへで 13 / 23

• Sitter is immobile: picks a vertex and remains there until caught.

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be n-1 on a tree, and is between |E(G)|/2 and |E(G)| in general. [2]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be n-1 on a tree, and is between |E(G)|/2 and |E(G)| in general. [2]
- We look at a cop using depth first search (DFS) and find

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be n-1 on a tree, and is between |E(G)|/2 and |E(G)| in general. [2]
- We look at a cop using depth first search (DFS) and find:

▲ロト ▲母ト ▲ヨト ▲ヨト ヨヨ のの⊙

14 / 23

• DFS is an optimal strategy for the cop on a tree.

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be n-1 on a tree, and is between |E(G)|/2 and |E(G)| in general. [2]
- We look at a cop using depth first search (DFS) and find:
 - DFS is an optimal strategy for the cop on a tree.
 - Expected capture time is strictly less than n-1 on any non-tree using DFS.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨヨ のの⊙

Background

- Sitter is immobile: picks a vertex and remains there until caught.
- Cop can't see the sitter.
- The expected capture time is known to be n-1 on a tree, and is between |E(G)|/2 and |E(G)| in general. [2]
- We look at a cop using depth first search (DFS) and find:
 - DFS is an optimal strategy for the cop on a tree.
 - Expected capture time is strictly less than n-1 on any non-tree using DFS.
 - Expected capture time is at least $\frac{n+1}{2}$ on any graph using DFS.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨヨ のの⊙

Table of Contents

1 Introduction

2 Cop vs. Drunk

3 Cop vs. Sitter

4 Cop vs. Gambler

6 Hunter vs. Mole

<ロト < 部ト < 目ト < 目ト 三国 のへで 15 / 23

• Gambler: not constrained by edges, but must pick a **gamble** (probability distribution on the vertices of G) and stick to it.

• Gambler: not constrained by edges, but must pick a **gamble** (probability distribution on the vertices of G) and stick to it.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

16 / 23

• Cop: constrained by edges but knows gambler's gamble.

- Gambler: not constrained by edges, but must pick a **gamble** (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

- Gambler: not constrained by edges, but must pick a **gamble** (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

Theorem

The cop vs. gambler game takes expected time exactly n on any (connected, undirected, simple) graph.

- Gambler: not constrained by edges, but must pick a **gamble** (probability distribution on the vertices of G) and stick to it.
- Cop: constrained by edges but knows gambler's gamble.
- How long does it take cop to capture gambler (on average)?

Theorem

The cop vs. gambler game takes expected time exactly n on any (connected, undirected, simple) graph.

Bonus: this remains true whether the cop gets to choose her initial position or not.

Table of Contents

1 Introduction

2 Cop vs. Drunk

3 Cop vs. Sitter

4 Cop vs. Gambler

5 Hunter vs. Mole

<ロト < 部ト < 目ト < 目ト 三国 のへの 17 / 23

	Cop vs. Drunk		Hunter vs. Mole
Game set	t-up		

• Hunter: not constrained by edges but plays in the dark.

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.

18 / 23

• Players move simultaneously.

- Hunter: not constrained by edges but plays in the dark.
 - Mole: constrained by edges and must move, but can see hunter.
 - Players move simultaneously.
 - On what graphs can hunter guarantee capture of mole in bounded time (call these hunter-win)?

- Hunter: not constrained by edges but plays in the dark.
- Mole: constrained by edges and must move, but can see hunter.
- Players move simultaneously.
- On what graphs can hunter guarantee capture of mole in bounded time (call these hunter-win)? (Equivalently: hunter plays against genius, prescient mole who always makes the moves guaranteed to maximize capture time.)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のく⊙

18 / 23

- - Hunter: not constrained by edges but plays in the dark.
 - Mole: constrained by edges and must move, but can see hunter.
 - Players move simultaneously.
 - On what graphs can hunter guarantee capture of mole in bounded time (call these **hunter-win**)? (Equivalently: hunter plays against genius, prescient mole who always makes the moves guaranteed to maximize capture time.)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のく⊙

18 / 23

Theorem

A graph is hunter-win if and only if it is a lobster.

Definition

A **lobster** is a tree containing a path P such that all vertices are within distance 2 of P.

Definition

A **lobster** is a tree containing a path P such that all vertices are within distance 2 of P.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

19 / 23

Lemma

Lobsters are hunter-win.

Lemma

Lobsters are hunter-win.

Proof

Lemma

Lobsters are hunter-win.

Proof by picture.

Lemma

Lobsters are hunter-win.

Proof by picture.

4日 ト 4日 ト 4 目 ト 4 目 ト 単 日 9 4 で
20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture.

Define an **odd** (resp. **even**) **mole** to be a mole who starts at an odd (resp. even) distance from the marked vertex.

《日》 《圖》 《臣》 《臣》

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture.

Define an **odd** (resp. **even**) **mole** to be a mole who starts at an odd (resp. even) distance from the marked vertex.

・ロト ・御ト ・ヨト ・ヨト

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 1^{st} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 2^{nd} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 3^{rd} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 4^{th} step:

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 5^{th} step:

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 6^{th} step:

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 7^{th} step:

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 8^{th} step:

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 8^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 9^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 10^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 11^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 12^{th} step:

< □ > < @ >

→ Ξ →

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 13^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 14^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture. After hunter's 15^{th} step:

< □ > < @ >

→ Ξ → → Ξ

20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture.

This is an optimal strategy for the hunter, by the way.

<ロ > < 部 > < 書 > < 書 > 三目 = の Q (~ 20 / 23

Lemma

Lobsters are hunter-win.

Proof by picture.

(日) (同) (日) (日) (日)

Q.E.D.!

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

• G is the three-legged spider.

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

- G is the three-legged spider.
- G is the cycle C_n .

Lemma

A graph G is a lobster if and only if it is a tree that doesn't contain the three-legged spider:

Lemma

A graph G is mole-win if:

- G is the three-legged spider.
- G is the cycle C_n .
- G contains a mole-win subgraph.

References

- A. Bonato, P. Golovach, G. Hahn, and J. Kratochvil, The capture time of a graph, Discrete Math. **309** (2009) 5588-5595.
- S. Gal, Search games with mobile and immobile hider, SIAM J. Control & Opt. 17 (1979) 99-122.
 - T. Gavenčiak, Games on graphs, Charles University, Prague (2007).
 - G. MacGillivray, private communication, ca. May 2011.
 - R. J. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, *Discrete Math.* 43 (1983), 235–239.

- R. Peyre, A probabilistic approach to Carne's bound, Potential Anal. **29** (2008) #1, 17–36.

A. Quilliot, Thesis, Homomorphismes, points fixes, rétractations et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques, *Université de Paris VI* (1983).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

22 / 23

N. Th. Varopoulos, Long range estimations for Markov chains, *Bull. Sci. Math.* **109** (1985) 225–252.

Thank you!

<ロト < 部ト < 国ト < 国ト 三国 の Q (* 23 / 23

Table of Contents

Lemma

Let G be any graph and let $x_0 \in V(G)$ be any vertex in G. Let $\{x_0, x_1, x_2, \ldots\}$ be any random walk on G beginning at x_0 . Then $\mathbb{P}(d(x_0, x_4) < 4) \ge 1/s$, where $s = 4n^{2/3}$.

(日本)(四本)(日本)(日本)

2/6

Lemma

Expected distance after Stage 1 is less than $1 + \sqrt{n(1+5\log n)}$.

4 ロ ト 4 部 ト 4 書 ト 4 書 ト 書 目 つくで
3 / 6

Lemma

Expected distance after Stage 2 is less than $(5\log n)^{3/4}n^{1/4}$.

<ロ> < 部> < き> < き> ミミン つへで 4 / 6

A quadratic digraph

Define a R(k) to be a reflexive directed graph on n = 2k+1 vertices consisting of:

- an "outer ring" comprised of a (counterclockwise)-directed k-cycle
- an "inner ring" comprised of a (counterclockwise)-directed $(k\!-\!1)\text{-cycle}$
- arcs from a vertex in the inner ring to a vertex in the outer ring configured such that k-2 vertices in the inner ring are incident with one such arc, and 1 vertex in the inner ring is incident with two such arcs
- an "internal vertex" (C) that is out-directed to every vertex in the inner ring
- an "external vertex" (R) incident with two arcs

The graph R(7)

 The graph R(7)

Lemma

R(k) is cop-win for all k and the capture time is $\Theta(n^2)$.

<ロト < 部ト < 国ト < 国ト 三日 のへの 6 / 6