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Balanced Partitions

Sam Vandervelde

Abstract A famous theorem of Euler asserts that there are as many partitions of n
into distinct parts as there are partitions into odd parts. We begin by establishing a less
well-known companion result, which states that both of these quantities are equal to
the number of partitions ofn into even parts along with exactly one triangular part. We
then introduce the characteristic of a partition, which is determined in a simple way
by the placement of odd parts within the list of all parts. This leads to a refinement
of the aforementioned result in the form of a new type of partition identity involving
characteristic, distinct parts, even parts, and triangular numbers. Our primary purpose
is to present a bijective proof of the central instance of this new type of identity, which
concerns balanced partitions—partitions in which odd parts occupy as many even as
odd positions within the list of all parts. The bijection is accomplished by means of
a construction that converts balanced partitions of 2n into unrestricted partitions ofn
via a pairing of the squares in the Young tableau.

Keywords Integer partition· Distinct parts· Even parts· Triangular number·
Characteristic· Bijection
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1 Introduction

There are as many partitions ofn into distinct parts as odd parts; this result still re-
tains its appeal centuries after Euler proved it in 1748 and has formed the basis for
generalizations in many directions, some of which are outlined in [1], [2], [3] and [4],
among others. One natural avenue of inquiry is to ask whetherthere is a correspond-
ing relationship between partitions into distinct parts and partitions involving even
parts. The answer is in the affirmative: there are as many partitions of n into distinct
parts as there are partitions ofn into even parts along with exactly one triangular part.
(A triangular part has sizeTk = 1

2k(k +1) for some integerk.)
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Notwithstanding its elementary nature, this partition identity seems to have been
overlooked in recent decades. However, other relationships between partitions into
distinct parts and even parts have been found in [2], [5] and [6], for example. It is
interesting to note that in each case triangular numbers make an appearance, either
overtly or implicitly.

Our aim is not so much to establish this identity (there is a short generating func-
tion proof), but to highlight its existence and to show that the search for a bijec-
tive proof leads in fruitful directions. In particular, we will define a quantity called
the characteristic of a partition and demonstrate how it affords a refinement of this
identity, thus leading to a new type of partition identity equating partitions ofn into
distinct parts having characteristick with partitions ofn−T2k into even parts.

The chief purpose of this paper is to present a bijective proof of the central in-
stance of this type of identity. One formulation of this result states that for alln the
number of balanced partitions of 2n into distinct parts is the same as the number of
unrestricted partitions ofn. A balanced partition is one in which the odd parts are
equally split between odd positions and even positions whenthe parts are listed as
usual in nonincreasing order. Thus the five balanced partitions of 8 are 8, 7–1, 6–2,
5–3 and 4–3–1, which agrees with the fact thatp(4) = 5.

2 An initial result

Recall that thekth triangular number is given byTk = 1
2k(k +1). A triangular part of

a partition is a part whose size is equal toTk for some integerk. Thus unlike an even
part, a triangular part may have size zero. As usual, the empty partition counts as a
partition of 0 into distinct parts or into even parts.

Proposition 1 For every nonnegative integer n, the number of partitions of n into
distinct parts is equal to the number of partitions of n into even parts along with
precisely one triangular part.

To clarify the assertion, consider the casesn = 9 andn = 10. The partitions ofn
of each type for these values are listed in Table 1. In the right-hand column of each
list the triangular part is shown in boldface. Note that in the second list the partitions
0–6–4 and6–4 are counted separately, since the triangular part is distinguished. As
predicted, there are an equal number of each type of partition in each list. This fact is
quickly established using the Jacobi triple product.

Proof By substitutingx = q
1
2 andy = q

1
4 in the Jacobi triple product

∞

∏
m=1

(1− x2m)(1+ x2m−1y2)(1+ x2m−1y−2) =
∞

∑
n=−∞

xn2
y2n

, (1)

we obtain the identity

∞

∏
m=1

(1−qm)(1+ qm)(1+ qm−1) =
∞

∑
n=−∞

q
1
2n2+ 1

2n
. (2)
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Table 1 Partitions of 9 and 10 into distinct parts or even parts and a triangular part.

distinct χ(π) △ + evens

9 −1 3–6
8–1 1 3–4–2
7–2 −1 3–2–2–2
6–3 1 1–8
6–2–1 −1 1–6–2
5–4 −1 1–4–4
5–3–1 −1 1–4–2–2
4–3–2 1 1–2–2–2–2

distinct χ(π) △ + evens

10 0 10
9–1 0 6–4
8–2 0 6–2–2
7–3 0 0–10
7–2–1 −2 0–8–2
6–4 0 0–6–4
6–3–1 0 0–6–2–2
5–4–1 −2 0–4–4-2
5–3–2 0 0–4–2–2–2
4–3–2–1 2 0–2–2–2–2–2

Let T (q)= 1+q+q3+q6+q10+ · · · be the generating function for a single triangular
part. Dividing the above equality by 2 and reindexing the(1+ qm−1) term leads to

∞

∏
m=1

(1−q2m)(1+ qm) = T (q), (3)

which may be rewritten more productively as

(1+ q)(1+ q2)(1+ q3) · · · = T (q) ·
1

1−q2 ·
1

1−q4 ·
1

1−q6 · · · .

The coefficient ofqn on the left counts partitions ofn into distinct parts, while the
coefficient ofqn on the right tallies partitions ofn into even parts and exactly one
triangular part, so we are done. ⊓⊔

Let p(n) denote the number of unrestricted partitions ofn and letpd(n) be the
number of partitions ofn into distinct parts. Since a partition of 2n into even parts
is equivalent to a partition ofn, there will bep(1

2(9−1)) = p(4) = 5 partitions of 9
involving a triangular part of 1 and even parts otherwise. Similarly, there will be
p(1

2(9−3)) = p(3) = 3 partitions that employ a triangular part of 3, as evidencedby
Table 1. Hence we deduce thatpd(9) = p(4)+ p(3). In general, this line of reasoning
leads to an expression forpd(n) reminiscent of Euler’s Pentagonal Number Theorem.
Adopting the standard convention thatp(n)= 0 for values ofn other than nonnegative
integers, we have the following.

Corollary 1

pd(n) =
∞

∑
k=0

p
(

1
2(n−Tk)

)

. (4)

It is interesting to note the similarity of this formula witha relatively recent result
obtained by Robbins [6], which states that

p2(n) =
∞

∑
k=0

p(n−Tk), (5)

wherep2(n) is the number of partitions ofn in two colors into distinct parts.



4

3 Characteristic of a partition

We now consider how a bijective proof of Proposition 1 might be obtained. The parti-
tions ofn into even parts and a triangular part are naturally grouped by the triangular
part used, so we begin by searching for some feature of the partitions ofn into distinct
parts that gives rise to groups of the same sizes. After some searching we discover
that the characteristic of a partition has the desired property.

Definition 1 Let π be a partition ofn, with parts listed in nonincreasing order as
usual. Letaπ be the number of odd parts appearing in even positions withinthe list,
and letbπ be the number of odd parts appearing in odd positions. We define the
characteristic χ(π) of the partitionπ to be the quantityaπ − bπ . Whenχ(π) = 0,
meaning thataπ = bπ , we say that the partition isbalanced.

This definition applies to any partition ofn, not necessarily into distinct parts. Also,
we declare thatχ(π) = 0 for the empty partition.

To illustrate, letπ be the partition 7–2–1. Since the odd parts occur in the first
and third positions, we haveaπ = 0 andbπ = 2, soχ(π) = −2. Consulting Table 1
we find that among the partitions of 10 into distinct parts,χ(π) = −2 also for 5–4–1,
while χ(π) = 2 only for 4–3–2–1; all other partitions satisfyχ(π) = 0. Apparently
partitions withχ(π) = 0,−2 and 2 should correspond to partitions involving a trian-
gular part of 0, 6 and 10, respectively. Examining the list for n = 9 further suggests
that partitions withχ(π) =−1 or 1 should pair off with partitions having a triangular
part of 1 or 3, respectively. In general, we propose the following.

Conjecture 1 Let n be a fixed nonnegative integer. For each integerk, there are as
many partitions ofn into distinct parts having characteristick as there are partitions
of n into even parts and a single triangular part equal toT2k. That is to say, there are
p
(

1
2(n−T2k)

)

such partitions.

Therefore we have found a refinement of the initial result outlined in Proposition 1;
summing over all integersk produces Corollary 1. In the subsequent sections we will
provide a bijective proof of this conjecture in the case of balanced partitions.

Remark 1 Based on this conjecture one can determine the generating function for
pd(n,k), the number of partitions ofn into distinct parts having characteristick. Rel-
atively elementary manipulations reveal that

∞

∑
n=0

∞

∑
k=−∞

pd(n,k)xnyk = P(x2)
∞

∑
k=−∞

ykxT2k

=
∞

∏
m=1

(1+ x2m)(1+ x4m−1y)(1+ x4m−3y−1), (6)

whereP(x) = ∏∞
m=1(1− xm)−1 is the generating function for unrestricted partitions.

The first equality is obtained by considering even and odd values ofk separately,
while the second follows from a routine application of the Jacobi triple product.
Observe that specializing toy = 1 neatly givesPd(x), the generating function for
partitions ofn into distinct parts. It would be interesting to ascertain the generating
function for p(n,k), the number of partitions ofn having characteristick.
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Fig. 1 Determining diagonal lengths from a Young tableau.

The characteristic of a partition ofn may also be computed via the lengths of cer-
tain diagonals in its Young tableau. Let the lengths of successive diagonals (slanting
from upper left to lower right) be denoted byd1 throughdn, beginning with the lower
left corner, as depicted in Figure 1. Note that squares within the same diagonal need
not be adjacent. (For our purposes it will be more natural to order rows of the Young
tableau in ascending order, “French style.”) Thus the partition 6–4–3–1 has diagonals
of lengthd1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 = 3, d6 = 1, anddk = 0 for 7≤ k ≤ 14,
as shown. Observe that the partition 5–5–2–1–1 yields precisely the same values for
d1 throughd14. Thus different partitions may have the same diagonal lengths.

We mention without proof that a sequenced1, d2, . . . ,dn of nonnegative integers
are the diagonal lengths for some partition ofn if and only if the following three
conditions are met:

i. d1+ d2+ · · ·+ dn = n,
ii. d1 = 1, d2 = 2, . . . ,dm = m for some 1≤ m ≤ n, and

iii. dm ≥ dm+1 ≥ ·· · ≥ dn.

We will also require the following result on diagonal lengths.

Proposition 2 Let π be a partition of n having diagonal lengths d1, d2, . . . , dn. Then

χ(π) =
n

∑
k=1

(−1)kdk. (7)

Furthermore, there is exactly one partition of n into distinct parts having the given
diagonal lengths.

Proof Color the Young tableau forπ in a chessboard fashion so that the lower left
corner is shaded, as done in Figure 1. Then the odd-numbered diagonals will contain
dark squares while the even-numbered diagonals contain light squares, so the sum
∑(−1)kdk measures the signed excess of light squares. On the other hand, an even
part yields a row of even length, which will contain an equal number of light and dark
squares. Meanwhile an odd part in an even (resp. odd) position corresponds to a row
with one extra light (resp. dark) square. Thereforeχ(π) = aπ −bπ also measures the
signed excess of light squares, so these quantities are equal.
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Fig. 2 Blocks used for creating a partition ofn, numbered according to the diagonal they serve.

Finally, a Young tableau represents a partition into distinct parts if and only if all
the squares within each diagonal are adjacent to one anotherand extend to the lower
edge. Otherwise examine the Young tableau at a point along the lowest numbered
diagonal where a break occurs to find a pair of equal parts. Hence there exists a
unique partition ofn into distinct parts having a particular set of diagonal lengths,
obtained from a given tableau by “sliding” all blocks withineach diagonal down and
to the right as far as possible. ⊓⊔

It is worth noting that one may define an equivalence relationon the set of all
partitions ofn by declaring thatπ1 ∼ π2 wheneverπ1 andπ2 have the same diagonal
lengths. Then Proposition 2 indicates that there is exactlyone partition ofn into
distinct parts within each equivalence class, hence there are pd(n) classes in total. In
addition, the characteristic of a class is well-defined. (N.B. The fact thatχ(π) is given
by an alternating sum explains our choice of terminology forthis quantity.)

4 Describing the bijection

For the remainder of our discussion we will focus solely on balanced partitions, with
the goal of proving that the number of balanced partitions of2n into distinct parts is
equal to the number of partitions ofn. Consider the Young tableau for any balanced
partition of 2n having diagonal lengthsd1 to d2n, shaded as in Figure 1. We perform
the following algorithm, which has the effect of pairing light and dark squares in the
process of creating a partition ofn.

a. Keep the dark square from the first diagonal in its originalposition.
b. For each subsequent diagonal, use as many squares as necessary from that diago-

nal to cover all unpaired squares (if any) left over from the previous step.
c. Place the remaining squares in the rectangular block reserved for that particular

diagonal as indicated in Figure 2, starting at the left-hand(or bottom) edge and
filling in to the right (or up).

d. Repeat steps b. and c. until all diagonals have been incorporated and every square
has been paired with a square of the opposite color.
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Fig. 3 Applying the bijective algorithm to a partition with diagonal lengths 1, 2, 3, 4, 3 and 1.

One step of this algorithm is illustrated in Figure 2 for a certain partition with
d7 = 3. Squares along the seventh diagonal are dark; we use one of them to cover
the currently unpaired white square in the fourth row, then begin filling the block in
the fourth column with the remaining two dark squares. (The solid circles represent
squares that have already been paired.) The entire process is illustrated in Figure 3
for the partitions in Figure 1, ultimately yielding the partition 3–2–2.

Before continuing, the reader is encouraged to perform thisalgorithm for each
of the balanced partitions of 10 into distinct parts. (They are 10, 9–1, 8–2, 7–3, 6–4,
6–3–1 and 5–3–2.) This can easily be done with five red and five black cards from a
standard deck to represent the five light and dark squares. Itis quite marvelous to see
the Young tableaux for each partition of 5 appear in turn. Theintuition gained from
such an exercise will also greatly clarify the subsequent arguments.

Proposition 3 Let π be a balanced partition of 2n. Then the algorithm described
above yields a valid Young tableau for a partition of n.

Proof Supposeπ has diagonal lengthsd1 = 1, d2 = 2, . . . , dm = m followed by
lengths satisfyingdm ≥ dm+1 ≥ ·· · ≥ d2n. (Herem is a constant depending onπ .)
The firstm steps of the algorithm proceed in an orderly fashion: the squares within
each diagonal cover all unpaired squares from the previous step and then exactly fill
out their designated block shown in Figure 2. During this stage the Durfee square of
the new partition is filled out.

We will show that from this point on each diagonal is long enough to cover all the
unpaired squares left over from the previous step, but not solong as to subsequently
fill the allotted space in the block reserved for that diagonal. Assume for sake of
argument that we are handling diagonal 2k, which has light squares, for some 2k > m.
Then there should be at least as many light as dark squares in the first 2k diagonals,
but the excess should be less thank. In other words, we must have

0≤ (d2k + d2k−2+ · · ·+ d2)− (d2k−1+ d2k−3+ · · ·+ d1) < k.

But d2 j −d2 j−1 = 1 when 2≤ 2 j ≤ m andd2 j −d2 j−1 ≤ 0 for 2j > m, which estab-
lishes the right-hand inequality. Furthermore, using the fact thatχ(π) = 0 we may
rewrite the left-hand inequality as(d2n + · · ·+ d2k+2)− (d2n−1 + · · ·+ d2k+1) ≤ 0,
which follows immediately from the fact thatd2 j −d2 j−1 ≤ 0 whenever 2j > m.

For diagonal 2k +1> m consisting of dark squares we must instead show that

0≤ (d2k+1 + d2k−1+ · · ·+ d1)− (d2k + d2k−2+ · · ·+ d2) < k +1.
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Pairing terms and usingd1 = 1 gives the right-hand inequality in the same manner as
above. We may useχ(π) = 0 to rewrite the left-hand inequality as before, then pair
up terms and note thatd2n ≥ 0 to finish the odd case.

To complete the proof we must show that the portions of the Young tableau to the
right of and above the Durfee square form a nonincreasing sequence of columns and
rows. The height of the(k +1)st column is equal to the excess of dark squares in the
first 2k +1 diagonals, thus is given by

(d2k+1 + d2k−1+ · · ·+ d1)− (d2k + d2k−2+ · · ·+ d2).

Hence the difference in height between thekth and(k + 1)st columns isd2k − d2k+1,
which is nonnegative since 2k +1> m. (I.e. we are to the right of the Durfee square.)
The same reasoning shows that the rows above the Durfee square are also nonincreas-
ing, thus completing the proof. ⊓⊔

5 Proof of the bijection

We now show that the construction just described is in fact a bijection, which will
prove our main result.

Theorem 1 For each nonnegative integer n, the number of balanced partitions of 2n
into distinct parts is equal to the number of partitions of n.

Proof Whenn = 0 there is one partition of each type, so assume thatn ≥ 1. There
are pd(2n) equivalence classes of partitions of 2n when they are grouped according
to diagonal lengths, since there is exactly one partition into distinct parts within each
class, by Proposition 2. The above construction maps each class to a partition ofn, so
we must establish that this map is injective and surjective to prove the theorem.

Suppose that partitionsπ1 andπ2 belong to distinct classes, and let their diagonal
lengths differ for the first time at diagonalk. Then clearly the construction will result
in a different number of filled squares appearing in blockk in Figure 2. Since no
later step in the construction affects the number of squaresin that block, the resulting
partitions ofn will be distinct, hence the map is injective.

We now show that every partition ofn arises via our construction. Given a Ferrer’s
diagram for a partition ofn, overlay the blocks used in the algorithm, as illustrated in
Figure 4 for the partition 6–5–4–2–2. Setd1 = 1, and for each 1< j ≤ 2n defined j to
be the total number of dots contained within blocksj and j−1. We claim that these
values constitute a valid set of diagonal lengths for a partition of 2n. For instance, the
nonzero values of thed j for the partition illustrated in Figure 4 ared1 throughd12,
equal to 1, 2, 3, 4, 5, 5, 5, 5, 4, 2, 1, 1. These correspond to thebalanced partition
12–9–7–6–4 of 38.

Note that alln dots are contained within then× (n + 1) rectangle consisting of
blocks 1 to 2n. Also, every dot is counted exactly twice when assigning values for
the diagonal lengths (since no dots reach block 2n), sod1 +d2+ · · ·+d2n = 2n. Next
let m be the smallest value for which blockm is completely filled but blockm+1 is
not. Then clearly we haved1 = 1, d2 = 2, . . . ,dm = m. But as soon as the dots fail
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Fig. 4 Proving that the construction is surjective in the case of a 6–5–4–2–2 partition.

to completely fill one of the blocks—as is the case for block 6 in Figure 4—the dots
in all subsequent blocks may not extend beyond those in the previous adjacent block,
since this would imply that some row or column of the Ferrer’sdiagram had a gap.
Note also that blockm+1 has no more dots than blockm−1, since the latter block is
filled but the former is not. By definitiondk −dk+1 is equal to the difference between
the number of dots in (adjacent) blocksk−1 andk +1, which we have just argued is
zero or positive whenk ≥ m. Therefore we conclude thatdm ≥ dm+1 ≥ ·· · ≥ d2n.

In summary, we have shown that the values ford1 throughd2n represent the diag-
onal lengths for some partition of 2n. Hence the map defined by our construction is
surjective, and therefore bijective, which completes the proof. ⊓⊔

Corollary 2 The number of ordered 2n-tuples (d1,d2, . . . ,d2n) of nonnegative inte-
gers satisfying the following conditions is equal to p(n).

i. d1+ d2+ · · ·+ d2n = 2n,
ii. d1+ d3+ · · ·+ d2n−1 = d2 + d4+ · · ·+ d2n,

iii. d1 = 1, d2 = 2, . . . , dm = m for some 1≤ m ≤ 2n,
iv. dm ≥ dm+1 ≥ ·· · ≥ d2n.

Proof Such ordered 2n-tuples comprise all the possible diagonal lengths for balanced
partitions of 2n, which are in one-to-one correspondence with partitions ofn, by
Theorem 5. ⊓⊔

Remark 2 We made a choice to orient even-numbered blocks horizontally and odd-
numbered blocks vertically when setting up our algorithm. However, the mechanics
of the proofs would have proceeded just as smoothly if Figure2 were reflected over
the liney = x. In this case the algorithm would produce a partition conjugate to the
one it currently produces, as one might imagine. We chose theplacement of blocks
described above because this version of the algorithm has the additional property that
it converts a balanced partition of 2n with all even parts to the partition ofn having
parts half as large, as the reader may confirm.
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