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Abstract A famous theorem of Euler asserts that there are as manyigastofn
into distinct parts as there are partitions into odd paresbégin by establishing a less
well-known companion result, which states that both of ¢hgsantities are equal to
the number of partitions afinto even parts along with exactly one triangular part. We
then introduce the characteristic of a partition, whichésetimined in a simple way
by the placement of odd parts within the list of all parts.sTleads to a refinement
of the aforementioned result in the form of a new type of giartiidentity involving
characteristic, distinct parts, even parts, and triarrquianbers. Our primary purpose
is to present a bijective proof of the central instance of tiaw type of identity, which
concerns balanced partitions—partitions in which oddgpaccupy as many even as
odd positions within the list of all parts. The bijection iscamplished by means of
a construction that converts balanced partitionsrofio unrestricted partitions of
via a pairing of the squares in the Young tableau.
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1 Introduction

There are as many patrtitions wfinto distinct parts as odd parts; this result still re-
tains its appeal centuries after Euler proved it in 1748 aaslfbrmed the basis for
generalizations in many directions, some of which are vediin [1], [2], [3] and [4],
among others. One natural avenue of inquiry is to ask whéfieee is a correspond-
ing relationship between partitions into distinct partsl grartitions involving even
parts. The answer is in the affirmative: there are as manitipag of n into distinct
parts as there are partitionsrointo even parts along with exactly one triangular part.
(A triangular part has siz& = %k(k+ 1) for some integek.)



Notwithstanding its elementary nature, this partitiomitty seems to have been
overlooked in recent decades. However, other relatiossbgtween partitions into
distinct parts and even parts have been found in [2], [5] &)dfr example. It is
interesting to note that in each case triangular numbereraakappearance, either
overtly or implicitly.

Our aim is not so much to establish this identity (there is@tsfpenerating func-
tion proof), but to highlight its existence and to show that search for a bijec-
tive proof leads in fruitful directions. In particular, welindefine a quantity called
the characteristic of a partition and demonstrate how drdf a refinement of this
identity, thus leading to a new type of partition identityuatjng partitions of into
distinct parts having characterisiavith partitions ofn — Ty into even parts.

The chief purpose of this paper is to present a bijective fopbthe central in-
stance of this type of identity. One formulation of this éstates that for alh the
number of balanced partitions ohInto distinct parts is the same as the number of
unrestricted partitions aofi. A balanced patrtition is one in which the odd parts are
equally split between odd positions and even positions vherparts are listed as
usual in nonincreasing order. Thus the five balanced partitof 8 are 8, 7-1, 6-2,
5-3 and 4-3-1, which agrees with the fact thgt) = 5.

2 An initial result

Recall that thé" triangular number is given by = %k(k+ 1). A triangular part of
a partition is a part whose size is equallidor some integek. Thus unlike an even
part, a triangular part may have size zero. As usual, the yepgatition counts as a
partition of O into distinct parts or into even parts.

Proposition 1 For every nonnegative integer n, the number of partitions of n into
distinct parts is equal to the number of partitions of n into even parts along with
precisely onetriangular part.

To clarify the assertion, consider the cases 9 andn = 10. The partitions oh
of each type for these values are listed in Table 1. In the-tigind column of each
list the triangular part is shown in boldface. Note that ie second list the partitions
0-6—4 and6—4 are counted separately, since the triangular part ildisshed. As
predicted, there are an equal number of each type of partitieach list. This fact is
quickly established using the Jacobi triple product.

Proof By substitutingx = q% andy = q% in the Jacobi triple product

[ee]

[1A—MA+HT )L™ Yy 2) = 5 Xy, (1)
m=1 n=—co
we obtain the identity

M- d@+qm@eqny = 3 ghren @

m=1 n=—o



Table 1 Partitions of 9 and 10 into distinct parts or even parts arnchadular part.

distinct x(m A +evens distinct  x(m) A +evens

9 -1 36 10 0 10

8-1 1 342 9-1 0 64

7-2 -1 3-2-2-2 8-2 0 6-2-2

6-3 1 1-8 7-3 0 0-10

6-2-1 -1 1-6-2 7-2-1 -2 0-8-2

5-4 -1 1-4-4 6-4 0 064

531 -1 1-4-2-2 6-3-1 0 0-6-2-2

4-3-2 1 1-2-2-2-2 5-4-1 -2 0-4-4-2
5-3-2 0 0-4-2-2-2
4-3-2-1 2 0-2-2-2-2-2

LetT(q) = 1+9+0°+®+q'%+ - - be the generating function for a single triangular
part. Dividing the above equality by 2 and reindexing the- g™1) term leads to

00

[M@-™a+d™ =T(a), 3

m=1
which may be rewritten more productively as
1 1 1
1-¢> 1-qg* 1—q®
The coefficient ofg” on the left counts partitions af into distinct parts, while the

coefficient ofg" on the right tallies partitions ofi into even parts and exactly one
triangular part, so we are done. O

(1+a)(1+)(1+%)---=T(q)

Let p(n) denote the number of unrestricted partitionsadind letpy(n) be the
number of partitions of into distinct parts. Since a partition oh2nto even parts
is equivalent to a partition af, there will bep(%(Q— 1)) = p(4) =5 partitions of 9
involving a triangular part of 1 and even parts otherwiseniirly, there will be
p(%(9— 3)) = p(3) = 3 partitions that employ a triangular part of 3, as eviderined
Table 1. Hence we deduce thaf(9) = p(4) + p(3). In general, this line of reasoning
leads to an expression fpg(n) reminiscent of Euler's Pentagonal Number Theorem.
Adopting the standard convention thah) = 0 for values oh other than nonnegative
integers, we have the following.
Corollary 1

pa(n) = 3 P(2(n—To). @
k=0

It is interesting to note the similarity of this formula withrelatively recent result
obtained by Robbins [6], which states that

pa(n) = 3 p(n—T), ©)
k=0

wherepy(n) is the number of partitions of in two colors into distinct parts.



3 Characteristic of a partition

We now consider how a bijective proof of Proposition 1 mightitained. The parti-
tions ofn into even parts and a triangular part are naturally groupatidtriangular
part used, so we begin by searching for some feature of thitiquas of n into distinct
parts that gives rise to groups of the same sizes. After seaelsing we discover
that the characteristic of a partition has the desired ptgpe

Definition 1 Let 1T be a partition ofn, with parts listed in nonincreasing order as
usual. Leta; be the number of odd parts appearing in even positions wiktadist,
and letb; be the number of odd parts appearing in odd positions. We al¢fie
characteristic x (1) of the partitionr to be the quantitya; — by When x (1) =0,
meaning tha,; = by, we say that the partition isalanced.

This definition applies to any partition of not necessarily into distinct parts. Also,
we declare thay (1) = 0 for the empty partition.

To illustrate, letrt be the partition 7—2—1. Since the odd parts occur in the first
and third positions, we haws; = 0 andb; = 2, sox (1) = —2. Consulting Table 1
we find that among the partitions of 10 into distinct paxter) = —2 also for 5-4-1,
while x (1) = 2 only for 4-3-2-1; all other partitions satisfy 1) = 0. Apparently
partitions withy (11) = 0, —2 and 2 should correspond to partitions involving a trian-
gular part of 0, 6 and 10, respectively. Examining the listrfe= 9 further suggests
that partitions withx (171) = —1 or 1 should pair off with partitions having a triangular
part of 1 or 3, respectively. In general, we propose the Wahg.

Conjecture 1 Let n be a fixed nonnegative integer. For each intdgehere are as
many partitions of into distinct parts having characterisk@s there are partitions
of ninto even parts and a single triangular part equabo That is to say, there are
p(3(n—Tx)) such partitions.

Therefore we have found a refinement of the initial resultioed in Proposition 1;
summing over all integetisproduces Corollary 1. In the subsequent sections we will
provide a bijective proof of this conjecture in the case dahaed partitions.

Remark 1 Based on this conjecture one can determine the generatiagida for
pq(n, k), the number of partitions af into distinct parts having characteriskicRel-
atively elementary manipulations reveal that

[ee] [ee]

5 3 Ry = Poe) 3

[«

= [1 @+ L+ ) (L+ x4 3y, (6)
m=1

whereP(x) = [_;(1—xM)~1 is the generating function for unrestricted partitions.
The first equality is obtained by considering even and oddesbfk separately,
while the second follows from a routine application of theala triple product.
Observe that specializing tp= 1 neatly givesP4(x), the generating function for
partitions ofn into distinct parts. It would be interesting to ascertaia gfenerating
function for p(n, k), the number of partitions af having characteristik.



Fig. 1 Determining diagonal lengths from a Young tableau.

The characteristic of a partition afmay also be computed via the lengths of cer-
tain diagonals in its Young tableau. Let the lengths of sssive diagonals (slanting
from upper left to lower right) be denoted Hy throughd,, beginning with the lower
left corner, as depicted in Figure 1. Note that squares withe same diagonal need
not be adjacent. (For our purposes it will be more naturard@orows of the Young
tableau in ascending order, “French style.”) Thus the fiant6—4—3-1 has diagonals
of lengthd; =1,d, =2,d3=3,d4 =4,d5 =3,dg = 1, anddy = 0 for 7 < k < 14,
as shown. Observe that the partition 5-5—-2—1-1 yields ggbcihe same values for
di throughd1 4. Thus different partitions may have the same diagonal fengt

We mention without proof that a sequertied,, ..., d, of nonnegative integers
are the diagonal lengths for some partitionroff and only if the following three
conditions are met:

i. di+da+---+dh=n,
ii. di=1,db =2, ...,dn=mforsome 1< m< n, and

We will also require the following result on diagonal lengjth

Proposition 2 Let 17 be a partition of n having diagonal lengthsds, dy, ..., d,. Then
n

X(m =Y (~1)"d. 7
K=1

Furthermore, there is exactly one partition of n into distinct parts having the given
diagonal lengths.

Proof Color the Young tableau fomrin a chessboard fashion so that the lower left
corner is shaded, as done in Figure 1. Then the odd-numbgalls will contain
dark squares while the even-numbered diagonals contdih diguares, so the sum
z(—l)kdk measures the signed excess of light squares. On the othey &raeven
part yields a row of even length, which will contain an equahter of light and dark
squares. Meanwhile an odd part in an even (resp. odd) positicesponds to a row
with one extra light (resp. dark) square. Therefpfer) = a;— by also measures the
signed excess of light squares, so these quantities aré equa
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Fig. 2 Blocks used for creating a partition of numbered according to the diagonal they serve.

Finally, a Young tableau represents a partition into dcstparts if and only if all
the squares within each diagonal are adjacent to one aratderxtend to the lower
edge. Otherwise examine the Young tableau at a point alomdpthest numbered
diagonal where a break occurs to find a pair of equal partscél¢inere exists a
unigue partition ofn into distinct parts having a particular set of diagonal kasg
obtained from a given tableau by “sliding” all blocks withéach diagonal down and
to the right as far as possible. O

It is worth noting that one may define an equivalence relatinrthe set of all
partitions ofn by declaring thatn ~ ™ whenevery and have the same diagonal
lengths. Then Proposition 2 indicates that there is examtly partition ofn into
distinct parts within each equivalence class, hence therpgn) classes in total. In
addition, the characteristic of a class is well-defin®tdB( The fact thaiy () is given
by an alternating sum explains our choice of terminolog\tfigs quantity.)

4 Describing the bijection

For the remainder of our discussion we will focus solely olabeed partitions, with
the goal of proving that the number of balanced partition2ofto distinct parts is
equal to the number of partitions of Consider the Young tableau for any balanced
partition of 2h having diagonal lengthd, to do,, shaded as in Figure 1. We perform
the following algorithm, which has the effect of pairinghigand dark squares in the
process of creating a partition of

a. Keep the dark square from the first diagonal in its origieition.

b. For each subsequent diagonal, use as many squares asang&esn that diago-
nal to cover all unpaired squares (if any) left over from thevipus step.

c. Place the remaining squares in the rectangular blockuweddor that particular
diagonal as indicated in Figure 2, starting at the left-h@rdottom) edge and
filling in to the right (or up).

d. Repeat steps b. and c. until all diagonals have been iocater and every square
has been paired with a square of the opposite color.
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Fig. 3 Applying the bijective algorithm to a partition with diagallengths 1, 2, 3, 4, 3 and 1.

One step of this algorithm is illustrated in Figure 2 for atair partition with
d; = 3. Squares along the seventh diagonal are dark; we use oheroftb cover
the currently unpaired white square in the fourth row, thegib filling the block in
the fourth column with the remaining two dark squares. (Ttlg<ircles represent
squares that have already been paired.) The entire prexékssirated in Figure 3
for the partitions in Figure 1, ultimately yielding the pgan 3—-2-2.

Before continuing, the reader is encouraged to performalgerithm for each
of the balanced partitions of 10 into distinct parts. (They #0, 9-1, 8-2, 7-3, 6-4,
6—3—1 and 5-3-2.) This can easily be done with five red and faeklzards from a
standard deck to represent the five light and dark squareguite marvelous to see
the Young tableaux for each partition of 5 appear in turn. ifhgition gained from
such an exercise will also greatly clarify the subsequegiments.

Proposition 3 Let 11 be a balanced partition of 2n. Then the algorithm described
aboveyields a valid Young tableau for a partition of n.

Proof Supposert has diagonal lengthd; = 1, d» = 2, ..., dnw = m followed by
lengths satisfyingdy > dmy1 > -+ > don. (Herem is a constant depending an)
The firstm steps of the algorithm proceed in an orderly fashion: thesegiwithin
each diagonal cover all unpaired squares from the previepsasd then exactly fill
out their designated block shown in Figure 2. During thigetthe Durfee square of
the new partition is filled out.

We will show that from this point on each diagonal is long egioto cover all the
unpaired squares left over from the previous step, but ntarspas to subsequently
fill the allotted space in the block reserved for that diagoAasume for sake of
argument that we are handling diagonla|®&hich has light squares, for somke 2 m.
Then there should be at least as many light as dark squarkes firgt x diagonals,
but the excess should be less thain other words, we must have

0 < (dpx+ ok 2+ +0d2) — (dok—1+dok3+---+0d1) <k

Butdyj —dpj_1 = 1 when 2< 2j < manddyj — dpj_1 < 0 for 2j > m, which estab-
lishes the right-hand inequality. Furthermore, using et thaty (1) = 0 we may
rewrite the left-hand inequality a®p, + - + doky2) — (don—1 + -+~ + doiy1) < 0,
which follows immediately from the fact thab; — d»j_1 < 0 whenever 2> m.

For diagonal R+ 1 > m consisting of dark squares we must instead show that

0 < (dokgp1+ ok 1+ +0dy) — (dok+ 0k 2+ +d2) <k+1.



Pairing terms and usindy = 1 gives the right-hand inequality in the same manner as
above. We may usg(m) = 0 to rewrite the left-hand inequality as before, then pair
up terms and note thap, > 0 to finish the odd case.

To complete the proof we must show that the portions of thengdableau to the
right of and above the Durfee square form a nonincreasingeserg of columns and
rows. The height of thék+ 1)St column is equal to the excess of dark squares in the
first 2k+ 1 diagonals, thus is given by

(doky1+ ok 1+ +0d1) — (dpx+dx 2+~ + ).

Hence the difference in height between Kfeand (k + 1)t columns isdak — ok 1,
which is nonnegative sinc&k2-1 > m. (l.e. we are to the right of the Durfee square.)
The same reasoning shows that the rows above the Durfeeesapeaalso nonincreas-
ing, thus completing the proof. O

5 Proof of the bijection

We now show that the construction just described is in fadiection, which will
prove our main result.

Theorem 1 For each nonnegativeinteger n, the number of balanced partitions of 2n
into distinct partsis equal to the number of partitions of n.

Proof Whenn = 0 there is one patrtition of each type, so assumerthatl. There
are pq(2n) equivalence classes of partitions of @hen they are grouped according
to diagonal lengths, since there is exactly one partitiom distinct parts within each
class, by Proposition 2. The above construction maps eash th a partition afi, so
we must establish that this map is injective and surjectiyarove the theorem.

Suppose that partitiong and belong to distinct classes, and let their diagonal
lengths differ for the first time at diagonlal Then clearly the construction will result
in a different number of filled squares appearing in bléck Figure 2. Since no
later step in the construction affects the number of squarbst block, the resulting
partitions ofn will be distinct, hence the map is injective.

We now show that every partition afarises via our construction. Given a Ferrer’s
diagram for a partition ofi, overlay the blocks used in the algorithm, as illustrated in
Figure 4 for the partition 6-5-4—-2-2. Sht= 1, and for each X j < 2ndefined; to
be the total number of dots contained within bloglkand j — 1. We claim that these
values constitute a valid set of diagonal lengths for a fiantof 2n. For instance, the
nonzero values of thd; for the partition illustrated in Figure 4 ady throughds»,
equalto 1, 2, 3,4,5,5,5,5, 4, 2,1, 1. These correspond tbalanced partition
12-9-7-6-4 of 38.

Note that alln dots are contained within thex (n+ 1) rectangle consisting of
blocks 1 to 2. Also, every dot is counted exactly twice when assigningiealfor
the diagonal lengths (since no dots reach blatk 8od; +dy + - - - + dop = 2n. Next
let m be the smallest value for which blockis completely filled but blockn+ 1 is
not. Then clearly we have; = 1,d, = 2, ...,dy, = m. But as soon as the dots fail
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Fig. 4 Proving that the construction is surjective in the case cf%&-@-2—2 partition.

to completely fill one of the blocks—as is the case for blochk &igure 4—the dots
in all subsequent blocks may not extend beyond those in thequrs adjacent block,
since this would imply that some row or column of the Ferrdisgram had a gap.
Note also that blockn+ 1 has no more dots than blook— 1, since the latter block is
filled but the former is not. By definitiody — di. 1 is equal to the difference between
the number of dots in (adjacent) blodks 1 andk+ 1, which we have just argued is
zero or positive whek > m. Therefore we conclude thedf, > dy 1 > -+ > dop.

In summary, we have shown that the valuesdfpthroughd,,, represent the diag-
onal lengths for some partition oh2Hence the map defined by our construction is
surjective, and therefore bijective, which completes tuop O

Corollary 2 The number of ordered 2n-tuples (dj,ds,...,d2n) of nonnegative inte-
gers satisfying the following conditionsis equal to p(n).

i. di+da+---+don=2n,

ii. dy+d3+---+doyn_1=do+dg+---+dop,

iii. dy=1,do=2,...,dn=mfor somel <m<2n,
iV. dm>dme1 > > don.

Proof Such orderedr2tuples comprise all the possible diagonal lengths forrozdd
partitions of 2, which are in one-to-one correspondence with partitions,dfy
Theorem 5. O

Remark 2 We made a choice to orient even-numbered blocks horizgraall odd-
numbered blocks vertically when setting up our algorithrowdver, the mechanics
of the proofs would have proceeded just as smoothly if Fi@unesre reflected over
the liney = x. In this case the algorithm would produce a partition coajago the
one it currently produces, as one might imagine. We choseltdement of blocks
described above because this version of the algorithm lesdthitional property that
it converts a balanced partition oh2vith all even parts to the partition af having
parts half as large, as the reader may confirm.
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