
CHAPTER1
Logical Foundations

1.1 Statements and Open Sentences

Certain words and phrases are ubiquitous in mathematical discourse because
they convey the logical framework of the ideas being presented. For this reason
they arise naturally in everyday language as well, although they may be used
at times with a slightly different meaning in a conversational setting. Therefore
our first task will be to introduce the standard terminology of logic and precisely
define what these terms mean within the context of mathematics.

As a starting point, consider the following assertion:

“For all positive integers n, it is the case that n2 +2
is a multiple of 3 or that 3n+7 is a perfect square.”

(∗)

Before going on, decide for yourself whether or not this assertion is true. How
confident are you of your answer? Would you bet $1 that you are correct? Would
you bet $100? Throughout this text we will discuss strategies for demonstrating
the validity or falsehood of various statements such as the one made above. We
will begin by analyzing their structure.

A statement is a mathematical assertion that can be assigned a truth
value, either true or false.

Examples of statements include “The sum 33 + 43 + 53 is equal to 63,” or
“A triangle with sides of length 3, 4 and 5 has an area of 6.” Clearly questions
and commands should not qualify as statements. At the risk of omitting inter-
esting propositions like “The Patriots are the best football team of the decade,”
or “It’s freezing outside,” we will restrict ourselves primarily to mathematical
statements. In this way we avoid issues such as personal opinion or imprecisely
defined terms which make ambiguous the truth value of a statement.
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Note that it is not necessary to be able to establish the veracity of a given
mathematical sentence in order for it to qualify as a statement. For this reason
“There is a prime number between any two consecutive perfect squares,” is a
perfectly valid statement, even though nobody is completely sure whether it is
true or false. (Recall that a prime number is a positive integer that has exactly
two positive divisors: itself and 1. The first six prime numbers are 2, 3, 5, 7, 11
and 13.) In case you were wondering, the aforementioned statement is almost
certainly true, although a proof has yet to be found.

a) Which of the following are mathematical statements?
i. Seven trillion is the largest number.
ii. Please compute 382 in your head.
iii. Are all squares also rectangles?
iv. The integer 21000 has 694 digits.
v. Both n and 2n + 1 are primes.

One of the features of statement (∗) that makes it more complicated is the
appearance of the variable n. Since the validity of a phrase such as “3n + 7 is
a perfect square” depends on what value is assigned to the variable, we cannot
immediately ascertain its truth value. Therefore it would be inappropriate to
dub it a statement.

An assertion involving one or more variables is called an open sentence.
Choosing a value for each variable reduces the open sentence to a state-
ment that is either true or false, depending upon the values selected. The
set of values that a variable may assume is known as the domain of the
variable and is usually indicated at the start of the open sentence.

Examining statement (∗) we discover that it contains two shorter open sen-
tences; namely “n2 + 2 is a multiple of 3,” and “3n + 7 is a perfect square.” We
are also told that the domain of the variable n is the set of positive integers. For
a given value of n in the domain each of these open sentences has a truth value.
For example, when n = 10 we find that the first open sentence is true while
the second is false. These two open sentences are joined into a single longer
open sentence via the word or. Common usage suggests that this compound
sentence should be true when n = 10, since the first half is true.

The disjunction of two statements or open sentences is obtained by
joining them with the logical connective or. A disjunction is true as long
as at least one (and possibly both) of its components is true.

b) Is the disjunction “n2 + 2 is a multiple of 3 or 3n + 7 is a perfect
square” true or false when n = 6? How about when n = 8, n = 12 and n = 14?
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In light of our definition, the statement “100 is a perfect square or 101 is a
prime” is true. This convention might differ from the common notion of or for
some people, who hold that or means that exactly one (but not both) of the in-
dividual statements is true. There is a mathematical term having this meaning,
called ‘exclusive or’ (abbreviated to eor), but it arises relatively infrequently.
Just remember that whenever the word or appears in a mathematical setting,
it always means that at least one of the component statements is true.

The logical companion to the word or is the word and.

The conjunction of two statements or open sentences is obtained by
joining them with the logical connective and. A conjunction is true when
both of its components are true.

In this case there is no disagreement between the common and mathematical
usage of the term and. Thus the statement “100 is a perfect square and 101 is
a prime” is true, while “5 < 6 and −5 < −6” is false.

c) Create a conjunction of two open sentences involving a positive
integer n that is false when n = 1 and n = 2 but true when n = 3.

In our quest to dissect statement (∗), we finally come to the first two words
of the sentence. The phrase ‘for all’ is known as a quantifier, in the sense that
it prescribes the quantity of values of the variable for which the ensuing open
sentence should be true; in this case, all of them. The other commonly employed
quantifier is ‘there exists,’ which specifies that the open sentence should be true
for at least one value of the variable. It is not hard to imagine other quantifiers,
most of which are self-explanatory. For instance we have ‘there does not exist’
and ‘there exists a unique’. The latter means that the open sentence should be
true for exactly one value of the variable.

d) Which of the following statements are true?
i. For all positive integers n the number n2 + 2n + 2 is a multiple of 5.
ii. There exists a unique circle passing through two given points in the plane.

We can now say with certainty that statement (∗) is false, because the value
n = 12 provides a counterexample. As we have already seen, when n = 12 both
of the open sentences “n2 +2 is a multiple of 3” and “3n+7 is a perfect square”
are false; hence so is their disjunction. In other words, the open sentence “n2+2
is a multiple of 3 or 3n + 7 is a perfect square” is not true for all values of n,
as asserted. Note that we need only find a single counterexample in order to
conclude that the entire statement is false.†

a) The first and fourth sentences are mathematical statements.
(Both happen to be false, though.) The second is a command,
the third is a question, and the fifth is an open sentence.

b) The disjunction is true for n = 6, 8 and 14. However, it is false when n = 12 since
122 + 2 = 146 is not a multiple of 3 nor is 3(12) + 7 = 43 a perfect square.



4 CHAPTER 1. LOGICAL FOUNDATIONS

c) A correct, but uninteresting conjunction is “n > 2 and n < 10.” A more imaginative
response might be “n is odd and n2 + 1 is divisible by 5.”

d) When n = 3 we find that 32 + 2(3) + 2 = 17 is not a multiple of 5, thus the first

statement is false. The second statement is also false, because there is always more

than one circle passing through two given points.

Exercises
1. Decide whether the following statements are true or false.
a) The number 1776 is a perfect square.
b) It is the case that 33 + 43 + 53 is equal to 63.
c) A triangle with sides of length 3, 4, and 5 has an area of 6.
d) There are at least two prime numbers between 112 and 122.
e) A cube has six faces, eight vertices, and ten edges.

2. Find an integer value of n for which the open sentence “n2−n+11 is a prime
number” is true. Find another value for n that makes it false.

3. Find all positive integers k for which the open sentence “2k + 1 is a multiple
of 3” is false. (Just check k = 1, 2, . . . , 8 and describe the pattern.)

4. Find all real numbers x for which the open sentence 30(x− 20) = 20(x− 10)
is true. By the way, this is commonly known as “solving the equation.”

5. State the domain of the variables n, k and x in the previous three exercises.

6. In what way does the logical connective or come into play when solving the
equation (x + 3)(x2 − 9) = 0?

7. Decide whether each statement is true or false.
a) There exists a real number x such that ex = 2.
b) There exist positive integers p and q such that p/q = π.
c) There does not exist an integer k such that k2 + 2 is divisible by 5.
d) For all real numbers m, the line having slope m and y-intercept 1 intersects
the circle of radius 1 centered at the origin in exactly two points.
e) For every positive integer n, there exists a smaller positive integer.
f) There exists a unique two-digit number that is twice the product of its digits.
g) There exists a unique line passing through any two distinct points.

8. Find two positive integer values of n other than n = 12 which demonstrate
that statement (∗) is false.

Writing
9. Twenty students attend a math class one morning. Each student arrives at a
certain time, stays for some portion of the class, then departs without returning.
Suppose that given any pair of students, they are both present in the classroom
together for some part of the lecture. Prove that at some point in time all
twenty students are simultaneously present in the classroom.
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10. Twenty students are lined up in a row for a math bee. Given any two
adjacent students in the line, one or the other (or both) of them can recite the
first fifty digits of π. Illustrate an arrangement in which exactly twelve students
know how to recite π. Then prove that for any such arrangement at least ten
students know how to recite the first fifty digits of π.

11. Twenty math students are comparing grades on their first two quizzes of the
year. The class discovers that whenever any pair of students consult with one
another, these two students received the same grade on their first quiz or they
received the same grade on their second quiz (or both). Prove that the entire
class received the same grade on at least one of the two quizzes.

Further Exploration
12. It is standard in some programming languages for the number zero to rep-
resent one of the truth values (either true or false) and for positive numbers to
represent the other truth value. If assigned correctly, the operations of addition
and multiplication will then correspond to conjunction and disjunction, in some
order. Figure out how to make this all work out neatly.

1.2 Logical Equivalence

The ultimatum “I will not both cook dinner and wash the dishes,” is clearly
equivalent to declaring that “I will not cook dinner or I will not wash the dishes.”
Notice that the first statement involves a conjunction while the second employs
a disjunction. This observation is mildly troubling—apparently it is possible to
say the same thing in two different ways! It is natural to wonder whether there
is a systematic method for determining when two statements have the same
logical meaning, especially since it is possible to construct far more complicated
examples than the one given here. Happily, the answer is yes.

To describe this method efficiently we must first introduce some notation.
We will commonly use the letters P , Q and R to represent statements. Thus a
statement P has a truth value, either true (T ) or false (F ). Another statement
Q also has two truth values, so there are four possible ways to assign truth
values to both statements, listed in the truth table on the left below.

a) How many rows will a truth table for three statements have?

Next, we abbreviate “P or Q” as P ∨ Q. Recall that a disjunction is true
unless both component statements are false. This definition is summarized by
the truth table in the middle.

P Q

T T
T F
F T
F F

P Q P ∨Q

T T T
T F T
F T T
F F F

P Q P ∧Q

T T T
T F F
F T F
F F F
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On the other hand, the conjunction “P and Q,” abbreviated as P ∧Q, is only
true when both P and Q are true. This fact is reflected by the truth table on
the right. The negation “not P ,” written compactly as ¬P , has a particularly
simple truth table. Thus if P is true then ¬P is false, while if P is false then ¬P
is true. (Negation becomes more interesting when combined with other logical
operations.) We introduce this notation because it is helpful to be familiar with
these standard symbols. However, we will use symbolic notation outside of this
chapter only rarely, such as when validating proof techniques.

b) The disjunction P ∨ ¬Q will be true except in one case. What
truth values for P and Q make P ∨ ¬Q false?

c) Let P and Q be the statements “We won our first game,” and
“We won our second game,” respectively. Translate the following statements
into logical notation, using the symbols P , Q, ∧, ∨ and ¬.
i. We won both of our first two games.
ii. We lost both of our first two games.
iii. We won at least one of our first two games.
iv. We lost at least one of our first two games.
v. We didn’t win both of our first two games.

We are now in a position to show conclusively that the two statements made
earlier mean the same thing, i.e. are logically equivalent.

Suppose that two statements are constructed from the same set of compo-
nent statements. The two statements are said to be logically equivalent
if they have the same resulting truth value regardless of the manner in
which truth values are assigned to the component statements.

To see how this plays out in practice, let P be the statement “I will cook dinner”
and let Q be the statement “I will wash the dishes.” Then “I will not both cook
dinner and wash the dishes,” can be translated as ¬(P ∧ Q) while “I will not
cook dinner or I will not wash the dishes,” becomes ¬P ∨ ¬Q. We next create
a single truth table to compare the truth values of these two statements for all
possible truth values for P and Q. Sure enough, in every case the outcomes are
identical. We indicate their equivalence by writing ¬(P ∧Q) ≡ ¬P ∨ ¬Q.†

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

It should not come as a surprise to discover that the statements ¬(P ∨ Q)
and ¬P ∧ ¬Q are also logically equivalent, as you will confirm in the exercises.
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These two rules for negating a conjunction or disjunction frequently come in
handy, so we highlight them below.

DeMorgan’s Laws indicate how negation distributes over conjunction
and disjunction. They assert that

¬(P ∧Q) ≡ ¬P ∨ ¬Q and ¬(P ∨Q) ≡ ¬P ∧ ¬Q.

Among other things, DeMorgan’s Laws indicate how we should negate certain
statements. Thus the opposite of “Let x be a real number such that x ≥ 0 and
x2 = 9,” would be “Let x be a real number such that x < 0 or x2 �= 9.” (Note
that the domain of the variable does not change.)

d) Determine the negative of the statement “Sink or swim.”

The use of parentheses in the above examples was crucial to clarifying the
scope of the not symbol. As you will discover in the exercises, ¬(P ∧ Q) and
¬P ∧ Q are not logically equivalent. Parentheses are also important when it
comes to specifying order of operation, just as with algebraic expressions. For
example, the statement P ∨Q ∧ R is ambiguous—does this mean (P ∨Q) ∧ R
or P ∨ (Q ∧ R)? The distinction is necessary, because these statements have
different logical meanings. We may demonstrate this fact via a truth table.

P Q R (P ∨Q) ∧R P ∨ (Q ∧R)

T T T T T
T T F F T
T F T T T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F

Since the right-hand columns are not identical we conclude that the two state-
ments are not logically equivalent; that is, (P ∨Q) ∧R �≡ P ∨ (Q ∧R).

Certain statements, like “We’ll get there when we get there,” and “Either
I’ll pay you the money back, or I won’t,” are amusing because they manage to
be undeniably true without really saying anything new.

A statement that is always true is called a tautology, while a statement
that is always false is known as a contradiction.

One can confirm that a given logical statement is a tautology by constructing
its truth table and checking that every possible outcome is true; similarly, every
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entry in the truth table for a contradiction will be F . One example of a tautology
is P ∨ ¬P ; for if P is true then so is P ∨ ¬P , but if P is false then ¬P is true,
hence P ∨ ¬P is again true.

e) Why is P ∧ ¬P is a contradiction?

f) What is the negation of a contradiction?

Tautologies and contradictions usually involve more than one statement,
such as the tautology (P ∧ ¬Q) ∨ (¬P ∨ Q) appearing in the exercises. Bear
in mind that these examples are relatively rare; most logical statements are
sometimes true and sometimes false.

a) A truth table for three statements has eight rows.
b) If P is false while Q is true then P ∨ ¬Q will be false.
c) The translations, in order, are P ∧Q, ¬P ∧¬Q, P ∨Q, ¬P ∨¬Q,

and ¬(P ∧Q). Note that the last two statements actually mean the same thing.
d) “Don’t sink and don’t swim,” or perhaps “Float.”
e) It is impossible for P and ¬P to both be true, hence P ∧ ¬P will always be false.

f) The negation of a contradiction is a tautology.

Exercises
13. Let P be the statement “The cat is outside,” let Q be the statement “The
dog is outside,” and let R be the statement “It is bright and sunny today.”
Translate the following statements into logical syntax.
a) The cat and dog are both inside, as it is raining today.
b) The cat is outside even though it is raining today.
c) At least one pet is outside on this sunny day.
d) It is not the case that the dog is outside in the sunshine.
e) The cat and dog are in different locations.

14. Establish that ¬(P ∧Q) �≡ ¬P ∧Q.

15. Consider the statements “It is not the case that I will run for president or
stage a military coup,” and “I will not run for president and I will not stage
a military coup.” Explain why these statements mean the same thing. Then
translate both statements into compact logical notation.

16. Demonstrate that ¬(P ∨Q) ≡ ¬P ∧ ¬Q.

17. Negate each of the following statements.
a) Triangle ABC has a perimeter of 12 and an area of 6.
b) Let k be an integer such that k is even or k ≤ 10.
c) I am older than Al but younger than Betty.
d) It is not the case that 2x < y and 2y < x.
e) Jack will answer this question or the next one.
f) There is a new car behind at least one of the doors.
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18. Which of the following gives a valid logical equivalent to P ∧(Q∨R)? Create
a truth table to confirm that your choice is right. (Don’t write out truth tables
for the other two options, though.)
a) P ∧ (Q ∨R) ≡ (P ∧Q) ∨R
b) P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)
c) P ∧ (Q ∨R) ≡ (P ∨Q) ∧ (P ∨R)

19. Create a truth table for the exclusive or operation “P eor Q.” Recall that
this statement is true whenever exactly one of P and Q is true.

20. Write eor in terms of or, and, not. In other words, create a statement
involving only P , Q, ∨, ∧, ¬, (, and ) that is logically equivalent to “P eor Q.”

21. Show that the statement P ∧Q∨R is ambiguous by demonstrating that the
statements (P ∧Q) ∨R and P ∧ (Q ∨R) are not logically equivalent.

22. Describe in words how to predict when the disjunction P ∨ Q ∨ R is true.
Then do the same for the conjunction P ∧Q ∧R.

23. Demonstrate that (P ∧ ¬Q) ∨ (¬P ∨Q) is a tautology.

24. Verify that ((P ∨ ¬Q) ∧ ¬R) ∧ (R ∨ (Q ∧ ¬P )) is a contradiction.

25. Suppose that statement P is a contradiction. Show that (P ∨Q)∧ (P ∨¬Q)
is also a contradiction.

Writing
26. A father has 20 one dollar bills to distribute among his five sons. He declares
that the oldest son will propose a scheme for dividing up the money and all five
sons will vote on the plan. If a majority agree to the plan, then it will be
implemented, otherwise dad will simply split the money evenly among his sons.
Assume that all the sons act in a manner to maximize their monetary gain but
will opt for evenly splitting the money, all else being equal. What proposal will
the oldest son put forth, and why?

27. Imagine that in the scenario of the previous problem the father decides that
after the oldest son’s plan is unveiled, the second son will have the opportunity
to propose a different division of funds. The sons will then vote on which plan
they prefer. Assume that the sons still act to maximize their monetary gain,
but will vote for the older son’s plan if they stand to receive the same amount
of money either way. What will transpire in this case, and why?

28. As part of an arithmetic exercise, Mr. Strump chooses two different digits
from 1 to 9, tells Abby their product, then challenges Abby to figure out which
two digits he has chosen. After a moment, Abby complains that there could
be more than one answer. Realizing that she is correct, Mr. Strump helpfully
mentions that the sum of the digits is not equal to 10. Abby is then able to
correctly deduce the two digits. Explain how it is possible to precisely determine
Mr. Strump’s two digits based on this story.
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1.3 The Implication

One of the aspects of mathematics that makes it such an exciting subject is the
manner in which a given set of assumptions can lead to surprising or unexpected
conclusions. For example, suppose that an ellipse is inscribed within a triangle,
meaning that the ellipse is tangent to all three sides of
the triangle. If we draw a segment joining each vertex
of the triangle to the point of tangency on the oppo-
site side as shown at right, then remarkably these three
segments all intersect at a single point. This result is
relatively simple to describe, but not nearly so easy to
prove. The clearest explanation involves an operation on
the diagram known as an affine transformation.

Or consider this delightful fact from number theory. Let n ≥ 2 be a positive
integer. Now multiply together all the numbers from n− 1 down to 1 and then
add 1 to the product. This quantity is written as (n− 1)! + 1 in mathematical
notation. If n is prime, the result will always be an exact multiple of n. For
example, taking n = 7 we find that 6! + 1 = (6)(5)(4)(3)(2)(1) + 1 = 721, which
is a multiple of 7 as predicted. This result is known as Wilson’s Theorem.

a) Confirm that Wilson’s Theorem holds for n = 3 and n = 5.

Most mathematical results follow the format just described: if certain state-
ments or conditions hold, then a result follows.

An implication has the form “If P then Q,” where P and Q are state-
ments or open sentences. We write P ⇒ Q for short, and refer to P as
the hypothesis or premise, whereas Q is known as the conclusion.

In practice, P encapsulates the facts we are given, while Q represents the result
to be proved.

It is important to have a sound understanding of the logical meaning of
implication, since it will inform the techniques we develop for proving mathe-
matical statements. However, the implication has the potential to be confusing
at first, for several reasons. To begin, there are many ways of expressing the
implication in our language. Thus P ⇒ Q can be written as “If P then Q” or
“P implies Q” or “Q whenever P” or “Q follows from P ,” among many other
possible ways to phrase this fundamental idea.

b) State the following implications in if-then form.
i. In order for photosynthesis to take place it is necessary to have light.
ii. We always have a great time when Laszlo comes over.
iii. For n3 to be even it is sufficient for n to be a multiple of 6.

Another cause for the uncertainty that may accompany the implication is
the fact that it is not immediately obvious how its truth table should be defined.
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Of course, it makes sense that if P is true and the implication P ⇒ Q is to hold,
then Q must also be true. But other rows of the truth table would seem to be
more debatable, at least on the surface. The following illustration will help to
clarify the issue.

Suppose that Kate and Nate are playing a game of checkers. Nate promises
that “If you beat me at checkers, then I will give you a chocolate bar.” Let’s
consider each of four possible scenarios in turn and decide whether or not Nate
has broken his promise.

• Kate wins and Nate gives her a chocolate bar.
Clearly Nate has kept his promise, so his statement was true.

• Kate wins but Nate does not give her a chocolate bar.
Just as clearly, Nate has broken his promise, thus his statement was false.

• Kate loses but Nate gives her a chocolate bar anyway.
In this case Nate is being generous. (Perhaps he likes Kate.) At any rate,
one can hardly claim that he has broken his promise.

• Kate loses and Nate does not give her a chocolate bar.
Nate is not so generous here, but there are no grounds on which to accuse
him of breaking his promise. Once again, his statement was valid.

Because of examples like the one above (and for various other good reasons),

P Q P ⇒ Q

T T T
T F F
F T T
F F T

we define the truth table for P ⇒ Q as shown at right.
The final two rows are a bit counter-intuitive, where we
declare that when P is false, the implication P ⇒ Q is
nonetheless true. These correspond to the final two sce-
narios above, in which we decided that Nate’s statement
was true, since he did not break his promise.

c) Consider the claim that “If quadrilateral ABCD has right angles
at vertices A and B, then it is a rectangle.” Draw a quadrilateral which shows
that this implication can be false. Which row of the truth table came into play?

When mathematical results are stated as implications they typically involve
open sentences (i.e. one or more variables). This was the case for Wilson’s
Theorem mentioned earlier, which is restated below in several forms.

a. If n is prime, then (n− 1)! + 1 is a multiple of n.

b. For all positive integers n, if n is prime then (n−1)!+1 is a multiple of n.

c. For all primes p, the number (p− 1)! + 1 is a multiple of p.

The first version would seem to be adequate. Technically, though, this version
is an open sentence, not a statement. Of course, it is understood that we are
asserting that the implication is true for every positive integer n. Therefore a
more precise wording is given by statement b. It is possible to streamline the
wording without losing any of the meaning, as illustrated by the final version.



12 CHAPTER 1. LOGICAL FOUNDATIONS

Mathematical Outing � � �
Each of the four cards below has a digit printed
on one side and a letter printed on the other side.
Imagine that a classmate makes the assertion that
“If there is a vowel on one side of a card then
there is an odd number on the other side.” Which cards must be turned over
to check whether or not this is a true statement?

D E 2 3

Now consider the following situation, concocted by psychologist Leda Cos-
mides and described by Malcolm Gladwell in his book The Tipping Point.

Suppose four people are drinking in a bar. One is drinking Coke.
One is sixteen. One is drinking beer and one is twenty-five. Given
the rule that no one under twenty-one is allowed to drink beer,
which of those people’s IDs do we have to check to make sure the
law is being observed?

If you felt that the first question was considerably harder than the second, you
are not alone. But in fact they are equivalent puzzles. The point made by
Gladwell is that as human beings most of us are hardwired to draw logical
conclusions in relational as opposed to abstract contexts.

To convincingly argue that an implication such as the one above is true, we
would in theory need to compute (p− 1)! + 1 for each prime p and check that it
is a multiple of p in every case. This is hardly feasible, since there are infinitely
many primes. To circumvent this difficulty, mathematicians have developed
general methods of argument that apply equally well to any prime. In this way
a single proof can handle all the cases simultaneously. We shall develop some
of these techniques in Chapter 4.

On the other hand, to demonstrate that such an implication is false, we need
only find a single counterexample. According to our truth table, P ⇒ Q fails
to be true when P is true but Q is false. Therefore we should seek a value of
the variable for which P holds but Q does not.

The negation of the implication “P implies Q” is given by “P and
not Q.” In symbolic notation we have ¬(P ⇒ Q) ≡ P ∧ ¬Q. Hence to
find a counterexample to the statement “P implies Q,” it suffices to find
an instance for which P is true but Q is false.
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d) State the negation of each implication.
i. If I eat another bite then I’ll burst.
ii. If (x− 1)(x− 3) = 3 then x− 1 = 3 or x− 3 = 3.

Algebra instructors are accustomed to seeing claims such as “If x2 = 25
then x = 5.” This implication looks good, but is actually not always valid.
To discover a counterexample, we must find a value of x for which the premise
x2 = 25 is true while the conclusion x = 5 is false. Put another way, we must
find a value of x which satisfies the negation, which states that “x2 = 25 and
x �= 5.” The table below tests several values of x.

x-value x2 = 25 x = 5 x2 = 25 ⇒ x = 5
x = 5 T T T
x = 1 F F T

x = −5 T F F

Therefore x = −5 provides a counterexample to the claim. This is the logical
analysis behind the mistake known as overlooking a solution.†

e) For which value of x is the implication “If (x− 1)(x− 3) = 3 then
x− 1 = 3 or x− 3 = 3” false?

a) For n = 3 we have (2)(1) + 1 = 3, which is divisible by 3. When
n = 5 we have (4)(3)(2)(1) + 1 = 25, which is divisible by 5.
b) i. If photosynthesis takes place then light is present. ii. If Laszlo

comes over then we have a great time. iii. If n is a multiple of 6 then n3 is even.
c) One example would be a trapezoid having angles of 90◦, 90◦, 135◦, and 45◦, in that
order. The second row of the table applies.
d) i. I ate another bite and I didn’t burst. ii. We have (x−1)(x−3) = 3 and x−1 �= 3
and x− 3 �= 3. (In other words, (x− 1)(x− 3) = 3 but x �= 4 and x �= 6.)
e) When x = 0 we have (x− 1)(x− 3) = 3, but neither x− 1 = 3 nor x− 3 = 3 holds.

Two cards must be flipped over to verify the assertion: the E and the 2. (The

latter because if there were a vowel on the reverse side then the assertion would be

false.) Similarly, we must check IDs for the sixteen-year-old and the beer drinker.

Exercises
29. Write the following implications in “If P then Q” form.
a) When it rains, it pours.
b) I’ll try escargot only if Al eats some first.
c) That a is even follows from the fact that 7a is even.
d) In order to start a fire it is necessary to light a match.
e) For triangle ABC to be isosceles it is sufficient to have ∠A ∼= ∠B.
f) A positive discriminant implies that a quadratic has two distinct solutions.

30. Experimentation suggests that if p is a prime then 2p − 1 is also a prime.
What would be required to show that this implication can be false?
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31. Create a statement that is logically equivalent to P ⇒ Q using only the
symbols P , Q, ∧, ∨, ¬. (Not necessarily all of them.)

32. Validate the definition of the negation of an implication by verifying that
¬(P ⇒ Q) ≡ P ∧ ¬Q is a logical equivalence.

33. Write out the negation of each of the following implications.
a) If Cinderella marries the prince then I’ll eat my hat.
b) If a2 is divisible by 12 then a is even or a is a multiple of 3.
c) Quadrilateral ABCD is a square whenever it has four congruent sides.
d) To bake bread it is necessary to use flour, water and yeast.

34. Let P and Q be the open sentences “7n + 1 is a perfect cube” and “n is a
perfect square,” respectively. Find positive integer values for n for which

a) P and Q are both true, b) P and Q are both false,
c) P is true while Q is false, d) P is false while Q is true.

In which cases is the implication P ⇒ Q true?

35. For what value of x is the implication “If |x− 3| = 1 then |x− 2| = 2” false?

36. Find all values of y for which the implication “If y < 2 then y2 < 4” is
true. (In particular, note that it is not true for all values of y; in other words,
squaring an inequality is not a valid algebraic step.)

37. In plain English, what does (P ∧ (P ⇒ Q)) ⇒ Q say? This rule of inference
in propositional logic is known as modus ponens. Construct a truth table for
this statement. How does the truth table demonstrate that modus ponens is a
valid rule of inference?

38. Repeat the previous exercise for ((P ⇒ Q)∧ (Q ⇒ R)) ⇒ (P ⇒ R). This is
another staple rule of inference in propositional logic, known as syllogism.

Writing

While the following problems are not directly related to the material presented
in this section, they represent a selection of classic problems with which every
student should be familiar.

39. Six students get together to study for a math exam. Each pair of students
are either acquainted with one another or else are unacquainted. Prove that it
is possible to find three of the students all of whom are acquainted with one
another, or else all of whom are unacquainted.

40. Seven mathematicians get together for a dinner party. Prove that it is not
possible for each mathematician to shake hands with exactly three others.

41. Suppose that eight people attend a math mixer. Prove that if each person
shakes hands with some (possible none) of the other guests, and no pair of
individuals shakes hands more than once, then there must exist two guests who
shook the same total number of hands.
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1.4 The Biconditional

Let us return to the case of the student faced with the equation x2 = 25. Imagine
that instead of just writing x = 5, this student gave their answer as x = 5, −5
or 0; in other words, included an extraneous solution. We justifiably feel that
this response should not receive full credit because x = 0 does not solve the
equation. More precisely, a number should appear in the list of solutions if it
satisfies x2 = 25, which requires that we include both x = 5 and x = −5, but
also only if it satisfies the equation, which rules out all other numbers.

A statement of the form “P if and only if Q,” is a biconditional. For
convenience, the phrase “if and only if” is often shortened to just iff.
A biconditional essentially declares that two statements are equivalent,
meaning that one statement is true exactly when the other is.

Incidentally, the popular abbreviation “iff” was invented by Paul Halmos, a
beloved writer who is best known among budding mathematicians for his book
I Want to Be a Mathematician.

a) The following statements illustrate some of the different ways
that the biconditional can be expressed. Determine a suitable way to complete
each sentence to create valid statements.
i. A triangle has three congruent angles exactly when it has. . .
ii. For an integer n, a necessary and sufficient condition for n to be both odd
and 1 greater than a multiple of 3 is that. . .
iii. That a real number x satisfies x2 < 4 is equivalent to. . .
iv. Pigs can fly if and only if. . .

Since a biconditional asserts that one statement is true exactly when the
other is true, the truth table for a biconditional has the entries shown at left.

P Q P⇐⇒Q

T T T
T F F
F T F
F F T

Although not immediately obvious, one way to express
the notion that two statements P and Q are equivalent
is to require that each statement imply the other. This
explains the genesis of the term ‘biconditional,’ since the
validity of each statement is conditional upon the valid-
ity of the other. It also explains the notation P ⇐⇒Q
used for the biconditional—it’s a combination of P ⇒ Q

and P ⇐ Q. This fundamental connection between implication and equivalence
can be established by means of a truth table, as will be done in the exercises.

Whenever we discover that one statement implies another, it is natural to
wonder whether the implication is true in the other direction.

The implication Q ⇒ P is known as the converse of P ⇒ Q.
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Mathematical Outing � � �
We discovered earlier that when n is a prime the
quantity (n − 1)! + 1 is divisible by n. Let’s see
what happens when n is not a prime. Compute
(n − 1)! + 1 for n = 6, 8 and 9. What do you
notice? Make a conjecture based on your findings. Does it appear that the
given expression is divisible by n if and only if n is prime?

The next few questions will help to explain the pattern you just noticed.
What would you predict will be the remainder when 47! + 1 is divided by 48?
Explain why your prediction should be true. Then repeat this exercise for the
case in which 48! + 1 is divided by 49.

b) Using if-then form, state the converse of each implication.
i. My flight is delayed whenever I reach the airport early.
ii. The angle measure m∠ACB = 90◦ implies that (AC)2 + (BC)2 = (AB)2.

It is a common mistake to assume that just because an implication is true,
then its converse will also be true. In reality, the converse is sometimes true and
sometimes false; it depends on the particular implication under consideration.
For example, we all know that a square has four sides of equal
length. This can be phrased as an implication by saying “If
quadrilateral ABCD is a square, then it has four congruent
sides.” As mathematicians, we should immediately ask our-
selves whether it is also true that “If ABCD has four congruent
sides, then it is a square.” A moment’s thought reveals that
the converse if false, since a rhombus (diamond) has four sides
of equal length but is not a square. We conclude that “ABCD is a square” and
“ABCD has four congruent sides” are not equivalent statements.†

We are also familiar with the fact that if a positive integer a is even, then
a2 will also be even. The converse of this implication would read, “For any
positive integer a, if a2 is even then a is also even.” In this case both the
original statement and the converse happen to be true. According to our earlier
discussion, we may now conclude that a is even if and only if a2 is even. In
general, whenever a statement and its converse are both true we have a pair of
equivalent statements.

a) i. . . . when it has three congruent sides. ii. . . . is that n is 1
greater than a multiple of 6. iii. . . . is equivalent to −2 < x < 2. iv.

. . . elephants can jump (or any other situation that never occurs).
b) i. If my flight is delayed, then I reached the airport early. ii. If we have the equality
(AC)2 + (BC)2 = (AB)2 then m∠ACB = 90◦.

The value of (n− 1)! + 1 is equal to 121, 5041 and 40321 when n = 6, 8 and 9. In
each case the number is 1 more than a multiple of n, rather than equal to a multiple
of n. Hence it appears that (n− 1)! + 1 is divisible by n iff n is prime.
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It makes sense that 47! would be a multiple of 48, since the product includes both

6 and 8. So adding 1 yields a number that is not a multiple of 48. Similarly, 48! is a

multiple of 49 since this product includes 7 and 14.

Exercises
42. Briefly explain why these biconditional statements are true or false.
a) A necessary and sufficient condition for a triangle to have two congruent sides
is for it to have two congruent angles.
b) For x a real number, x2 + x− 2 = 0 if and only if x = 1 or x = 2.
c) Let a and b be positive integers. Then ab is a multiple of 10 exactly when a
is a multiple of 10 or b is a multiple of 10.
d) We have that x �= y is equivalent to x2 �= y2 for real numbers x and y.
e) A positive integer is divisible by 3 iff its reverse is. (The ‘reverse’ is obtained
by writing the digits in the opposite order.)

43. Let P and Q be open sentences involving the variable x. What would a
counterexample to the claim “For all x we have P iff Q,” look like?

44. Create a truth table for the statement (P ⇒ Q) ∧ (Q ⇒ P ) and confirm
that it is identical to the one given above for P⇐⇒Q.

45. Are the statements (P ∨ Q) ⇐⇒ R and (P ⇐⇒R) ∨ (Q⇐⇒R) logically
equivalent? Why or why not?

46. Write the converse of the following implications.
a) Let n be an integer. If n is not a multiple of 3, then n2 +5 is a multiple of 3.
b) When two rectangles are congruent it follows that they have the same area.
c) For positive real numbers x and y, if x ≥ y then 1/x ≤ 1/y.
d) Let R and L be points to the right and left of the y-axis, respectively. If line
RL has positive y-intercept, then R is in quadrant I and L is in quadrant II.
e) For positive integers a and b, the number a + b involves the digit 0 whenever
both a and b use the digit 0.

47. For each of the implications in the previous problem, determine whether the
implication is true or false and then decide whether its converse is true or false.
Consequently, in which instances do we have a pair of equivalent statements?

48. Let P and Q be statements. Show that either P ⇒ Q or its converse is true.

49. Show that the statements Q ⇒ P and ¬P ⇒ ¬Q are logically equivalent.
Hence an equivalent way to state the converse of “P implies Q” is “not P implies
not Q.” (The statement ¬P ⇒ ¬Q is known as the inverse of P ⇒ Q.)

50. Write out the inverse of each implication below. Which statement do you
find to be more clear, the inverse or the converse?
a) Let k be a positive integer. If 3k + 1 is not a multiple of 4 then k is even.
b) Quadrilateral ABCD is a square whenever it has four congruent sides.
c) For a real number a, the equation 2x = a has no solution if a is not positive.
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Writing
51. The game of Snatch involves two players who take turns removing either 1,
2, 3 or 4 pennies from a pile of pennies. The winner is the player to take the last
penny. Depending on the number n of pennies in the pile, the player about to
move can either be guaranteed of eventually taking the last penny (a winning
position) or cannot prevent the other player from doing so (a losing position).
Which values of n constitute a losing position for the person about to play?
Begin your answer with “A pile of n pennies represents a losing position if and
only if n is. . . ” Then explain why your answer is correct.

52. Suppose instead that in the game of Snatch players may only remove 1, 3
or 4 pennies on each turn. Now which values of n constitute a losing position?
Write your answer and explanation as before.

Further Exploration
53. There are many possible ways to modify the game of Snatch. For instance,
one might allow the players to remove 1, 2, 4, 8, 16, . . . pennies on each turn. Or
one might have two separate piles, with the stipulation that from 1 to 4 pennies
may be removed, but only from one of the piles. Invent your own variation of
Snatch and analyze your game by carefully describing the winning and losing
positions and justifying your description.

1.5 Quantifiers

We briefly discussed quantified statement in the first section. At that point we
were interested in positive integer values of n for which n2 + 2 was a multiple
of 3 or 3n + 7 was a perfect square. Naturally we were curious as to how many
values of n met these conditions. All values of n? At least one value of n?
Exactly one value of n? No values of n?

A phrase that indicates the number of values of a variable satisfying an
open sentence is known as a quantifier. The two most common such
phrases are the universal quantifier “for all x” (∀x) and the existential
quantifier “there exists an x” (∃x).

Quantifiers are an indispensable part of our mathematical vocabulary. For
example, theorems often assert that some result holds for all values of a variable.
This is understood to be the case even when the phrase ‘for all’ is omitted. Thus
it is the case that if 2n − 1 is a prime, then n itself must be a prime. A more
precise rendering of this fact would state “For all positive integers n, if 2n−1 is
prime then n itself is prime.” (Primes of the form 2n−1 are known as Mersenne
primes. The largest known primes are of this form. As of this writing the current
record-holder is 243,112,609 − 1, a number having over ten million digits.)
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Although the concept of quantified statements is intuitively clear, it takes
some careful thought to keep track of what happens when we negate a quantified
statement or analyze statements containing two variables and two quantifiers.

a) Determine a statement which asserts the exact opposite of the
quantified statement “For every positive integer n, n2 − n + 41 is prime.”

An appealing but incorrect way to phrase the negative would be “For every
positive integer n, it is the case that n2−n+41 is not prime.” The reason that
this option does not suffice is that it swings from one extreme to the other rather
than encompassing all possibilities not covered by the original statement. The
given statement claims that there are no exceptions to the rule that n2−n+41
is prime. The opposite stance would be that there is an exception to this rule;
in other words, there does exist a value of n for which n2−n + 41 is not prime.
(Observe that this is a considerably less stringent condition than requiring that
n2 − n + 41 is not prime for all n.)

The negation of a quantified statement of the form “For all x, we
have P ,” can be written as “There exists an x such that ¬P .” Similarly,
the negation of the statement “There exists an x such that P ,” takes the
form “For all x, we have ¬P .”

The negation of an existential quantifier might also be written “There does not
exist x such that P .” However, this is generally not as useful a way to convey
the opposite meaning. Also, if P happens to be a conjunction, disjunction or
implication one must also take care to write ¬P correctly.

b) Write the negation of the statement “There exists a real number
x such that |x + 3| ≤ 1 and |x− 4| ≤ 2.”

A third quantifier occurs regularly in mathematical discussions, although
perhaps not quite as frequently as the universal and existential quantifiers just
discussed. It is the phrase ‘there exists a unique,’
also indicated by writing ‘there is one and only one.’
Uniqueness is one of the most elegant and appealing
characteristics in mathematics. For instance, given a
triangle, there exists a unique circle within the triangle
that is tangent to all three sides, as illustrated at right.
Or given any positive integer n, there is one and only
one way to write n as a product of primes.

c) Given any three points in the plane, is it true that there exists a
unique circle passing through all three points?

As a brief illustration, we argue that there is a unique solution to the equation
(x+4)(x−2) = −9. This is because rearranging and factoring the given equation
leads to (x + 1)2 = 0. Clearly x = −1 is the one and only solution.
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Mathematical Outing � � �
Self-referential statements are a recipe for trouble
when it comes to logical consistency. Consider

P1) The other statement is true.
P2) The other statement is false.

There is no consistent way to assign a truth value to each of these statements.
For if P1 is true then P2 will be true, which means that P1 is false, a contra-
diction. Likewise, if P1 is false then P2 will be also, implying that P1 is true
after all, so we again reach a contradiction.

Self-referential statements can form the basis for entertaining logic puzzles,
though. See if you can deduce the unique way of assigning truth values to the
following five statements in a logically consistent manner, and consequently
determine whether or not I like spaghetti and meatballs.

P1) I like spaghetti and meatballs.
P2) All odd-numbered statements are false.
P3) All even-numbered statements are true.
P4) At least one of P2 or P3 is true.
P5) If P1 is false then P2 is true.

The situation becomes even more exciting for open sentences involving two
or more variables, since we can quantify each variable separately. For instance,
Bertrand’s Postulate states that for all positive integers n ≥ 2, there exists a
prime p between n and 2n. It is important to understand that these quantifiers
are nested, meaning that the second one (“there exists a prime p”) falls within
the scope of the first one (“For all positive integers n ≥ 2”). We first select any
permissible value of n, say n = 13. We are then guaranteed a prime between n
and 2n; in this case, between 13 and 26. Sure enough, such a prime does exist.
In fact, there are a total of three such primes, namely p = 17, 19, and 23.

d) Confirm that Bertrand’s Postulate holds for n = 2, 3, . . . , 10.

The structure of Bertrand’s Postulate is “For all n ≥ 2, we have P ,” where
P itself is the quantified statement “There exists a prime p such that Q,” and
Q is the statement “p is between n and 2n.” Identifying this structure permits
us to determine the negation of the result. We begin by writing “There exists
an n ≥ 2 such that ¬P .” The negation of P is “For all primes p we have ¬Q.”
Finally, the negation of Q is “p is not between n and 2n.” Putting this all
together and writing the result smoothly, the negation states that “There exists
an integer n ≥ 2 such that there are no primes p between n and 2n.”

e) To appreciate how crucial the order of quantifiers can be, consider
the claim “There exists a prime p such that for all integers n ≥ 2 the prime p
lies between n and 2n.” Is the new statement true? Why or why not?



1.5. QUANTIFIERS 21

The order in which quantifiers appear does not matter when they are of the
same type. Thus we could claim that for all real numbers x, it is the case that
for all real numbers y the quantity (x − y)2 is positive. The meaning would
remain unchanged if we were to place the “for all y” quantifier ahead of the “for
all x” quantifier. Because of this fact, the given statement is usually shortened
to just “For all real numbers x and y, we have (x − y)2 > 0.” In the same
manner, rather than writing “There exists a positive integer m for which there
is a positive integer n such that m2 +mn+n2 is a perfect square,” we typically
combine the two existential quantifiers to obtain “There exist positive integers
m and n such that m2 + mn + n2 is a perfect square.”

Finally, note that when the universal quantifier is applied to an implication,
it makes sense to consider quantifying the converse of the implication. For
instance, we claimed earlier that for all positive integers n, if 2n − 1 is prime
then n is also prime. Quantifying the converse would read “For all n, if n is
prime then 2n−1 is also prime.” If both of these statements were true, we could
conclude that “For all n, 2n − 1 is prime if and only if n is prime.” As one of
the exercises will reveal, the converse does not hold for all values of n, so the
statements “2n − 1 is prime” and “n is prime” are not equivalent.

a) There is a positive integer n such that n2
− n + 41 is not prime.

b) Every real number x satisfies |x + 3| > 1 or |x− 4| > 2.
c) No, it is not always true. If the three points are situated along a

line, then there is no circle that passes through all three of them.
d) In each case there is a prime between n and 2n.
e) The new statement is false; there is no such prime. Thus p = 23 won’t do because
23 does not lie between n and 2n for all n—certainly not for n = 10, for instance.

If P3 is true then P2 will be also, which leads to a contradiction. Hence P3 is false.
Now if P4 is true then P2 is also, contradicting the fact that P3 is false. Thus P4 is
also false, which means that P2 is false. Now suppose that P1 is false. This would
make P5 false also, which contradicts P2. So P1 is true, hence P5 is also. When the
dust settles, it turns out that I do like spaghetti and meatballs.

Exercises
54. Determine the most accurate way to quantify each open sentence. Choose
from among for all, there exists, there exists a unique, or there does not exist.
Rewrite each quantified statement so that it reads nicely.
a) (integer n): n contains every odd digit.
b) (real number x): x2 + 4x + 5 = 0.
c) (point C): C lies on the lines y = x and y = 3x− 5.
d) (real number t): |t− 4| ≤ 3 and |t + 5| ≤ 6.
e) (integer k): the number 6k + 5 is odd.
f) (point U): the distance from U to the origin is positive.

55. Find the negation of “There exists a real number x such that cos x = 3x.”
Employ the universal quantifier in your statement.
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56. Determine the negation of “For all positive integers n, if n is prime, then
2n − 1 is prime.” Then find a value for n that satisfies your negation.

57. Write down the negation of the assertion “If f(x) is a linear function then
f(1) + f(2) = f(3).” Now use the linear function f(x) = 2x + 5 to show that
the negation is true.

58. Decide whether or not it is true that given fixed points A and B, there exists
a unique square having these points as two of its vertices.

59. Find the value of a for which the equation (x− 3)(x + 5) = a has a unique
solution; i.e. is satisfied by a unique real number x.

60. Determine the negation of the statement “For all rectangles in the plane
there exists a circle inside the rectangle that is tangent to all four sides.”

61. Consider the claim “For all real numbers x there exists a real number y such
that y > x.” Is this claim true or false? Explain.

62. Now consider the closely related claim “There exists a real number y such
that for all real numbers x we have y > x.” Is this claim true or false? Explain.

63. Write the negation of “There exists a positive integer N such that for all
integers n > N we have cos n < 0.99.”

64. Consider the statement “For all real numbers x and y, we have (x−y)2 > 0.”
Is this assertion true or false?

65. Show that there exist positive integers m and n such that m2 + mn + n2 is
a perfect square.

66. Let P and Q be open sentences involving a variable m. Suppose that it is
the case that “There exists an integer m such that P ⇒ Q,” and it is also true
that “There exists an integer m such that Q ⇒ P .” Does it necessarily follow
that the statement “There exists an integer m such that P⇐⇒Q” is true?

Writing
67. Show that for every positive integer a there exists a positive integer b such
that ab + 1 is a perfect square.

68. Prove that for all positive real numbers r there exists a rectangle whose area
is equal to r and whose perimeter is greater than 4r.

69. Demonstrate that there exists an infinitely long path in the plane, starting
at the origin, such that from any point (x, y) in the plane one can reach the
path by moving a total distance of less than one unit.

70. Prove that there exists a polynomial of the form f(n) = n2 + bn + c, where
b and c are positive integers, such that f(n) is composite (i.e. not prime) for all
positive integers n.

71. Explain why given any finite collection of points in the plane there exists
a triangle having three of the points as its vertices which contains none of the
other points in its interior.
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1.6 Reference

The purpose of this section is to provide a condensed summary of the most
important facts and techniques from this chapter, as a reference when studying
or working on material from later chapters.

• Vocabulary statement, truth value, open sentence, domain, disjunction, con-
junction, truth table, negation, logically equivalent, DeMorgan’s Laws, tautol-
ogy, contradiction, implication, hypothesis, premise, conclusion, biconditional,
iff, equivalent statements, converse, inverse, universal/existential quantifier

• Compound statements A statement is a mathematical sentence that is either
true or false, while an open sentence is an assertion involving one or more vari-
ables. Given statements or open sentences P , Q we may form their conjunction
P ∧Q (“P and Q”), their disjunction P ∨Q (“P or Q”), the implication P ⇒ Q
(“P implies Q”), its converse Q ⇒ P (“Q implies P”), its inverse ¬P ⇒ ¬Q,
and the biconditional P⇐⇒Q (“P if and only if Q”).

• Truth tables A truth table contains one row for each possible set of truth
values of its components. For complicated statements, create several columns to
determine the truth value of each part of the statement first. Two statements
are logically equivalent if they have identical truth tables. A tautology is a
statement that is true in every case while a contradiction is false in every case.

• Implication The statement “P implies Q” may be expressed as P is sufficient
for Q, Q whenever P , Q follows from P , or when P we have Q. This implication
is true unless P is true while Q is false. The converse is written “Q implies P .”
If an implication and its converse are both true then the component statements
are equivalent, meaning that each is true or false exactly when the other is; in
this case we say “P if and only if Q.”

• Quantified statements An open sentence contains variables. By inserting a
quantifier such as ‘For all’ (universal quantifier ∀) or ‘There exists’ (existential
quantifier ∃) or ‘There exists a unique’ (∃!) or ‘There does not exist’ (�) we
obtain a statement. The statement “For all x there exists a y such that. . . ” has
a different meaning than “There exists a y such that for all x. . . ”

• Negation The table below indicates how to negate a variety of statements.

Statement Negation
P and Q ¬P or ¬Q
P or Q ¬P and ¬Q
if P then Q P and ¬Q
for all x we have P there exists x such that ¬P
there exists x such that P for all x we have ¬P

Furthermore, the negation of “For all x there exists a y such that P ,” is written
“There exists an x such that for all y we have ¬P .” Similarly, the negation of
the statement “There exists an x such that for all y we have P ,” is written “For
all x there exists a y such that ¬P .
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Sample Proofs
The following proofs provide concise explanations for results discussed within
this chapter. They are meant to serve as an illustration for how proofs of
similar statements could be phrased. The boldface numbers indicate the section
containing each result; the location of that result within the section is marked
by a dagger (†).

1.1 Show that the following assertion is false: “For all positive integers n, it is
the case that n2 + 2 is a multiple of 3 or that 3n + 7 is a perfect square.”

Proof We exhibit a counterexample to show that the given assertion is false.
Taking n = 9 we find that n2+2 = 83, which is not a multiple of 3. Furthermore
3n+7 = 34, which is not a perfect square. Therefore it is not the case that n2+2
is a multiple of 3 or that 3n + 7 is a perfect square for all positive integers n.

1.2 Show that the statements ¬(P ∧Q) and ¬P ∨¬Q are logically equivalent.

Proof To show that these statements are logically equivalent we construct a
truth table for each, shown below.

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Since the truth values for the two statements match in every case, they are
logically equivalent.

1.3 Explain why the implication “For all x, if x2 = 25 then x = 5” is false.

Proof We will demonstrate a value of x for which the hypothesis is true but
the conclusion is false. Consider x = −5; in this case x2 = 25 holds, but x = 5
does not. Therefore this implication is not valid for all real numbers x.

1.4 Determine whether the claim “If ABCD is a square then ABCD has four
congruent sides” is true, whether the converse is true, and whether we have a
pair a equivalent statements.

Proof We know from elementary geometry that a square has four congruent
sides, so the given implication is true. The converse asserts that “If ABCD
has four congruent sides then ABCD is a square.” This claim is false, since a
rhombus (diamond) has four congruent sides but is not a square. Therefore the
two statements are not equivalent, since they do not each imply the other.


