
CHAPTER2
Set Theory

2.1 Presenting Sets

Certain notions which we all take for granted are harder to define precisely
than one might expect. In Taming the Infinite: The Story of Mathematics, Ian
Stewart describes the situation in this way:

The meaning of ‘number’ is a surprisingly difficult conceptual and
philosophical problem. It is made all the more frustrating by the
fact that we all know perfectly well how to use numbers. We know
how they behave, but not what they are.

He goes on to outline Gottlob Frege’s approach to putting the whole numbers
on a firm footing. Thus one might define the concept of ‘two’ via the collection
of all sets containing two objects. However, this practice of considering all sets
satisfying a certain condition cannot be applied indiscriminately, as philosopher-
mathematician Bertrand Russell subsequently pointed out. In the Mathematical
Outing on the next page you will consider “Russell’s paradox,” which highlights
the potential problems with Frege’s approach.

We will be content with a relatively informal definition of a set.

A set is any unordered collection of distinct objects. These objects are
called the elements or members of the set. The set containing no ele-
ments is known as the empty set.

A set may have finitely many elements, such as the set of desks in a classroom;
or infinitely many members, such as the set of positive integers; or possibly no
elements at all. The members of a set can be practically any objects imaginable,
as long as they are clearly defined. Thus a set might contain numbers, letters,
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Mathematical Outing � � �
To obtain a sense of the sorts of pitfalls awaiting
set theorists, consider the following classic para-
dox. In a certain town there is a single barber,
who shaves exactly those men who do not shave
themselves. Who shaves the barber? Try to appreciate the logical paradox that
arises in this description of the barber, then find the clever trick answer that
circumvents the paradox.

In a similar manner we could define a set which contains exactly those sets
which do not contain themselves. Why does this lead to a logical inconsistency?
And how is it possible for a set to contain itself in the first place?

polynomials, points, colors, or even other sets. In theory a set could contain
any combination of these objects, but in practice we tend to only consider sets
whose elements are related to one another in some way, such as the set of letters
in your name, or the set of even numbers. As in the previous chapter, we will
confine ourselves mainly to mathematical objects and examples.

We typically name sets using upper case letters, such as A, B or C. There are
a variety of ways to describe the elements of a set, each of which has advantages.
We could give a verbal description of a set, for example, by declaring that B is
the set of letters in the title of this book. We might also simply list the elements
of a set within curly brackets:

B = {b, r, i, d, g, e, t, o, h, i, g, h, e, r, m, a, t, h}.

Recall that a set only catalogs distinct objects, so the appearance of the second
letter g is redundant and should be omitted, and similarly for other repeated
letters. An equivalent but more appropriate list of the letters in this set is

B = {b, r, i, d, g, e, t, o, h, a, m}.

Since the order in which elements is listed is irrelevant, we could also write

B = {a, b, d, e, g, h, i,m, o, r, t} or B = {m, o, t, h, b, r, i, g, a, d, e}.

For a given set, it is natural to ask which objects are included in the set and
how many objects there are in total. We indicate membership in or exclusion
from a set using the symbols ∈ and �∈. Thus it would be fair to say that a ∈ B
and g ∈ B, but z �∈ B and � �∈ B either. We also write |B| to indicate the size,
or cardinality of set B. In the example above we have |B| = 11, of course. For
the time being we will only consider the cardinality of finite sets.

a) What can we say about set A if x �∈ A for all objects x?

b) Think of a five letter word with the property that |B| = 3, where
B is the set of letters appearing in your word.
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Listing the elements of a set has its drawbacks when the set contains infinitely
many members. However, when the pattern is clear it is acceptable to list the
first four or five elements, followed by an ellipsis (. . . ). Thus the set of all
positive odd integers is {1, 3, 5, 7, . . .}. The empty set can also be written using
curly brackets as { }. However, this special set arises so frequently that it has
been assigned its own symbol, which is ∅.

c) Let C be the set of positive integers which only contain the digits
3 or 4. List the elements of C using an ellipsis.

Another standard method for presenting a set is to provide a mathematical
characterization of the elements in the set. Suppose we wish to refer to the set
of all real numbers greater than 5. The following notation, which we shall call
bar notation for lack of a more imaginative term, achieves this quite efficiently.
Using the symbol R for the set of all real numbers, we could write

A = {x | x ∈ R and x > 5}.

The actual element (in this case a number x) is placed to the left of the bar,
while the description (x is a real number greater than 5) appears to the right
of the bar. A literal translation would be “A is the set of all x such that x is a
real number and x is greater than 5.” A less clunky rendition might read “Let
A be the set of all real numbers greater than 5.” Observe that x is only used
internally in the definition of set A; it does not refer to anything beyond. Thus
we would obtain the same result by defining A = {w | w ∈ R and w > 5}.

d) Let A be the set of all real numbers between 5 and 6, including 5
but not 6. Describe A with bar notation, using the variable y.

There is often more than one way to employ bar notation to describe a set.
For example, suppose that B is the set of perfect squares. We could think of the
elements of B as numbers, each of which is the square of an integer, in which
case we would write B = {n | n = k2, k ∈ Z}. Or we might decide that the
elements of B are squares, such that the number being squared is an integer.
This interpretation leads to B = {n2 | n ∈ Z}. The latter approach is preferable
in many ways, but either is correct.

e) Find two different ways to present the set C of all odd integers
using bar notation.

Certain sets of numbers, such as the real numbers R, are referred to regularly
enough to merit their own special symbol. Other standard sets include the
integers Z, the positive integers N (also called the natural numbers), the rational
numbers Q (the set of all fractions), and the complex numbers C. Recall that
a complex number is formed by adding a real number to a real multiple of i,
where i =

√
−1. Thus we could write

C = {a + bi | a, b ∈ R}.

In case you were wondering, the letter Z for ‘integers’ comes to us compliments
of the German root word zahl, meaning ‘number.’
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a) Set A must be the empty set: A = ∅.
b) Possible answers include radar, geese, queue or mommy.
c) C = {3, 4, 33, 34, 43, 44, 333, 334, . . .}. It is probably a good idea

to list at least seven elements of this set before the ellipsis, to make the pattern clear.
d) We could write A = {y | y ∈ R, 5 ≤ y < 6}.
e) Either C = {n | n = 2k + 1, k ∈ Z} or C = {2n + 1 | n ∈ N} will work, although
the latter is more concise.

It appears at first that the question cannot be answered. If the barber shaves
himself, then he is shaving a man who shaves himself, contrary to his job description.
On the other hand, if he does not shave himself, then he neglects his mandate to shave
all men who don’t shave themselves. The way out of this quandary, of course, is to
realize that the barber is a woman!

There is no similar clever fix for Russell’s paradox, though. Our set S contains
itself or it doesn’t; either situation contradicts the definition of the set. However, it is
possible for a set to contain itself. For instance, let A = {1, {1, {1, {1, . . .}}}}. Then
A = {1, A}. There are infinitely many nested sets in this example, although each set
contains only two elements—the number 1 and the set A.

Exercises
1. What is the set of colors appearing on both the American flag and the Ja-
maican flag?

2. Give a verbal description of the set {1, 4, 8, 9, 16, 25, 27, 32, 36, . . .}. (In other
words, find the rule that determines which numbers are included on this list.)

3. Give a verbal description of the set {January, March, May, July, August,
October, December}.

4. Give an example of a set B for which |B| = 3 and the elements of B are
polynomials having even coefficients.

5. Give an example of a set C with |C| = 2 such that the elements of C are sets
each of which contain four letters.

6. Let D be the set whose elements are equal to the product of two consecutive
natural numbers, such as 12 = 3 · 4. Present set D using a list and also via bar
notation. Which method is better suited for this set?

7. Briefly justify why the following statements are true or false.
a) If A is the set of letters in the word ‘flabbergasted,’ then |A| = 13.
b) For the set A in the previous part, we have a ∈ A or z ∈ A.
c) If B = {n | n ∈ Z, 10 ≤ n ≤ 20} then |B| = 10.
d) For the set B in the previous part we have 11 ∈ B and

√
200 ∈ B.

e) If L is the set of letters in your full legal name, then a ∈ L.
f) Let C = {x | x ∈ R, x2 ≤ 10}. If π �∈ C then −3 �∈ C.

8. How many sets A are there for which |A| = 5 and the elements of A are states
in New England?
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9. Describe the following sets using bar notation.
a) A is the set of all integers divisible by 7
b) B = {2, 3, 5, 9, 17, 33, 65, · · ·}
c) C is the set of all real numbers between

√
2 and π

d) D = {
1
2 , 1

3 , 1
4 , 1

5 , . . .}

10. Using bar notation, describe the set of rational numbers between 0 and 1.
Then describe the set of positive rationals whose denominator is a power of 2,
such as 7

2 , 3
4 , 5 or 1

16 . (The powers of 2 are 1, 2, 4, 8, . . . .)

11. Consider the set {y = m(x− 1) | m ∈ R}. Give a verbal description of the
sorts of objects that are elements of this set.

12. Let B = {2m + 5n | m, n ∈ N}. Is 10 ∈ B? Is 13 ∈ B? Explain.

Writing
13. Let A be a set with |A| ≥ 3, all of whose elements are integers. Show that
one can find distinct elements m, n ∈ A such that m− n is even.

14. Let A, B and C be different sets containing letters of the alphabet. Explain
why there must exist some letter that is either contained in exactly one of the
sets or contained in exactly two of the sets.

15. Prove that it is impossible to split the natural numbers into sets A and B
such that for distinct elements m, n ∈ A we have m + n ∈ B and vice-versa.

16. Set C consists of the thirty-six points of the form (a, b) where a and b are
integers with 0 ≤ a, b ≤ 5. Prove that no matter how we select five points from
set C, two of them will be situated a distance of 2

√
2 or less apart.

2.2 Combining Sets

Membership in the exclusive ∆Π club is not for everyone. Only those people
whose first and last names both begin with the letter D and whose birthday
is 3/14 are permitted to join. In other words, the ∆Π club is only interested
in those rare individuals common to both categories. Lately the club presi-
dent, Daphney Daly, has suggested that in order to boost the club’s dwindling
enrollment, membership restrictions should be relaxed to allow individuals in
either category to apply. These two approaches to membership requirements
correspond in a natural way to the two most basic means of combining sets.

The set of elements common to two given sets A and B is known as their
intersection and written as A ∩B. The set of elements appearing in at
least one of these sets is called the union, denoted by A ∪B.

a) Decide which elements ought to belong to each of A∪B ∪C and
A ∩B ∩ C. Then write a compact description of each set using bar notation.



30 CHAPTER 2. SET THEORY

Mathematical Outing � � �
Imagine that a certain math class consists of both
male and female students, some of whom reside in
New York while others come from out of state. All
students are currently seated. You are permitted
to request that all the students within some broad category (boys, girls, in-state
or out-of-state) stand up. You may also ask all male students, or all female
students, to reverse their position by standing if they are currently seated or
vice-versa. However, you may not give instructions such as “All boys please
sit,” or “All girls from out of state please stand.” Figure out how to arrange
for the following sets of students to stand while all others are seated.

• All students who are either female or from out of state.

• All female students who are from New York.

• All students who are either female and from New York or male and from
out of state.

Note that the set operation of intersection corresponds to the logical opera-
tion of conjunction. This relationship is made clear by the fact that

A ∩B = {x | x ∈ A and x ∈ B}.

Similarly union corresponds to the logical operation of disjunction, since

A ∪B = {x | x ∈ A or x ∈ B}.

Notice the resemblance between the symbols ∩, ∧ and ∪, ∨ as well.

b) Suppose that x ∈ A ∪ B ∪ C but x �∈ A ∩ B ∩ C. Consequently,
how many of the sets A, B or C must x be an element of?

It would stand to reason that the set operation corresponding to not would
involve creating a new set consisting of all objects not contained in a set A. Some
care needs to be exercised here, though. For instance, if A is the set of students
registered for our course who are sophomores, then objects
not contained in A include the governor of Maine, the color
orange, and a golden retriever named Izzy, among many
other things. What we really have in mind when we imagine
“not A” is the set of all students who are registered for
our course who are not sophomores. There is a universal
set lurking in the background that indicates the set of all
objects under consideration; in our case, students registered
for this course. Working within a universal set also helps
to dodge the paradoxes implicit in dealing with “the set of all sets.”
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With this in mind, let U be a universal set, and let A be a set whose elements
all belong to U . Then the complement of set A, denoted by A, is comprised
of all elements of U which are not in A. (The set A is sometimes referred to as
the complement of A in U .) The universal set is often understood from context.
Thus if B is the set of real numbers less than 5, then B = {x | x ∈ R, x ≥ 5}.
It would be almost redundant to declare that U is the set of real numbers.

c) For any set A and universal set U , what is the complement of the
complement of A?

d) Suppose that U is the English alphabet, A = {m, a, i, n, e} and
B = {w, y, o, m, i, n, g}. Compute |A ∪B| and |A ∩B|.

It is also standard practice to omit any reference to the universal set when
discussing statements such as A ∩B = A ∪ B. It is assumed that the elements
of A and B belong to a larger universal set in which all the action takes place.

The stage is almost set for our first major set theoretic result. However,
before attempting it we need a strategy for showing that two sets are equal.

We say that A and B are equal sets, written A = B, if these two sets
contain precisely the same elements. One common technique for showing
that two sets are equal is to show that every element of the first set must
be an element of the second set, and vice-versa.

We employ this strategy to establish the set identity A ∩B = A ∪B.

Step one: Let x be any element of the first set; i.e. let x ∈ A ∩B. This means
that x �∈ A ∩ B. Since A ∩ B consists of elements in both A and B, if x is not
in the intersection then either x �∈ A or x �∈ B, or both. In other words, x ∈ A
or x ∈ B, which means that x ∈ A ∪B.

Step two: On the other hand, if x ∈ A ∪B then we know that x ∈ A or x ∈ B,
which means that x �∈ A or x �∈ B. Since x is missing from at least one of the
sets A or B, it cannot reside in their intersection, hence x �∈ A∩B. Finally, this
is the same as x ∈ A ∩B. Hence we conclude that the sets A ∩B and A ∪ B
are indeed equal.†

You may have noticed that the steps in this paragraph were essentially the
same as the steps in the previous paragraph, just in the opposite order. This
will sometimes be the case, but more often it will not, especially as we tackle
more sophisticated set identities.

There is a rather convenient means of picturing unions, intersections and
complements of sets which greatly clarifies set identities such as A ∩B = A∪B.
A Venn diagram for two sets A and B is shown below. Given an arbitrary
element x of the universal set, there are four ways that x could be (or not
be) a member of set A and set B. These possibilities correspond to the four
regions in the Venn diagram. For example, we might have x �∈ A but x ∈ B,
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which corresponds to region III. Various combinations of these regions represent
different sets. Thus set A is made up of regions I and II, while A ∩ B consists
of region II alone. The remaining figures below illustrate how to shade in the
portion of the Venn diagram corresponding to the sets A ∩B, A and B. It now
becomes clear that A ∪B will be identical to A ∩B, so we conclude that these
two sets are equal.

Venn diagram for two sets A ∩B

A B

A Venn diagram for three sets is shown at right, with the region correspond-
ing to the set (A∪B)∩C shaded. Because a Venn diagram for two or three sets
includes regions for every possible combination of
membership in the sets, they provide a rigorous
means of confirming identities involving two or
three sets. In other words, the pictures above (if
presented in a more organized manner) serve to es-
tablish that A ∩B = A ∪B just as adequately as
the two-paragraph proof that preceded them. For
our purposes we will declare that the technique of
Venn diagrams is valid as long as there are three
or fewer sets involved, which are combined using
only union, intersection, and complements.

e) How many regions does a Venn diagram for three sets have?

f) Shade in the set A ∪ (B ∩ C) in a Venn diagram for three sets.
Compare it to the Venn diagram for (A∪B)∩C above. What can you conclude
based on these pictures?
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a) We have that A ∪ B ∪ C = {x | x ∈ A or x ∈ B or x ∈ C} and
A ∩B ∩ C = {x | x ∈ A and x ∈ B and x ∈ C}.
b) It is the case that x belongs to exactly one or two of A, B, C.

c) The answer is the original set A.
d) We have |A ∪B| = 9 and |A ∩B| = 2.
e) A three-set Venn diagram has eight regions.
f) The Venn diagram for A ∪ (B ∩C) will resemble the one pictured for (A ∪B) ∩C,
except that the remaining regions within set A will also be shaded in. Hence these
two sets are not equal in general.

• In the first scenario, simply have the female students rise, then ask the out of
staters to rise. • For the second situation, ask the boys to stand, request that the
out-of-state students also stand, then have all boys and all girls reverse positions. •

In the third case have the New Yorkers rise, then have all the boys reverse positions.

Exercises
17. Let A and B be the sets of students in a certain class who are sophomores
and who are from New York, respectively. Write an expression that represents
the set of students who are sophomores or who come from outside New York.

18. Define a universal set U = {a, b, c, d, e, f, g, h}. Using these elements, con-
struct two sets A and B satisfying |A| = 5, |B| = 4 and |A ∩B| = 2. Using the
sets you chose, compute |A ∩B|.

19. Why is it not possible for two sets to satisfy both A ∩ B = {f, o, u, r} and
A ∪B = {f, o, r, t, y, s, i, x}?

20. Given the universal set U = {a, b, c, . . . , z}, we define A = {b, r, i, d, g, e},
B = {f, o, r, t, y, s, i, x} and C = {s, u, b, z, e, r, o}. Decide whether the following
statements are true or false.
a) |A ∪ C| = 10
b) B ∩B = ∅

c) |B ∪ C| = 23
d) (A ∪B) ∩ C = {s, o, b, e, r}
e) |(A ∩B) ∪ (B ∩ C)| = 5
f) A ∩B ∩ C = {a, c, h, j, k, l, m, n, p, q, v, w, y}
g) |A ∪B ∪ C| = 15

21. Let A = {x | 1 < x < 3}, B = {x | 5 ≤ x ≤ 7} and C = {x | 2 < x < 6},
where x represents a real number. Determine the sets A ∪ C, (A ∪B) ∩ C and
B ∩ C, writing your answers in bar notation.

22. List the four possible ways that x could be (or not be) an element of two
given sets A and B. In each case identify the corresponding region in the labelled
Venn diagram within this section.

23. Use Venn diagrams to prove that A ∩B ∩ C = A ∪B ∪ C.

24. Use Venn diagrams to prove that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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Writing
25. Explain why our set equality strategy is valid. In other words, prove that if
every element of a set A is contained in another set B and vice-versa, then the
two sets must contain precisely the same elements.

26. Without appealing to a Venn diagram, demonstrate that A ∪B = A ∩B.

27. Without appealing to a Venn diagram, prove that for any three sets A, B
and C we have A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

28. Prove that A1 ∩A2 ∩A3 ∩A4 = A1 ∪A2 ∪A3 ∪A4.

29. Let A and B be sets within the universal set U = {a, b, c, . . . , z}. Working
from the definitions, explain why |A ∪B| = 26− |A|− |B| + |A ∩B|.

30. Prove that |A ∪B| + |A ∪ C| + |B ∪ C| ≤ |A| + |B| + |C| + |A ∪B ∪ C| for
any three finite sets A, B and C.

Further Exploration
31. Draw a configuration of four circles within a rectangle that creates as many
regions as possible. Confirm that it is impossible to obtain the requisite sixteen
regions necessary for a complete Venn diagram of four sets. Then figure out a
way to create a Venn diagram for four sets using elliptical regions.

2.3 Subsets and Power Sets

We now introduce several concepts which concern the extent to which elements
of one set are members of another set. At one extreme, it may be the case that
all the elements of a set A also belong to another set B. At the other extreme,
it could also be the case that none of the elements of A are contained in B.

Given sets A and B, whenever each element of A is also an element of B
we say that A is a subset of B and write A ⊆ B. Therefore to prove that
A ⊆ B one must show that if x ∈ A, then x ∈ B.

On the other hand, if A and B have no elements in common then they
are disjoint, which can be proved by showing that if x ∈ A then x �∈ B.

It makes sense that if A is a subset of B, then B contains A. More formally, we
say that B is a superset of A, denoted by B ⊇ A. However, this perspective
(and associated notation) arises fairly infrequently.

a) Give an example of two sets which are neither disjoint nor subsets
of one another.

b) What can be said about sets A and B if we have A ∩ B = ∅? if
we have A ∩B = A? if we have A ∩B = B?
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Mathematical Outing � � �
According to the definition of subset, should the
empty set be counted as a subset of C2 = {1, 2}?
Decide whether the definition supports an answer
of yes or no before going on. The other three
subsets are clearly {1}, {2} and {1, 2}, so depending upon your answer, you
would conclude that there are either three or four subsets of C2.

Now list all the subsets of C1 = {1}, C3 = {1, 2, 3} and C4 = {1, 2, 3, 4}
and look for a pattern among the numbers of such subsets. Which decision
regarding the empty set leads to a nicer, more natural answer? Based on your
pattern, how many subsets will Cn = {1, 2, . . . , n} have?

To highlight the process by which we begin crafting a proof, let us show that
if A ⊆ B ∩ C then C ⊆ A. There are two subsets here, so where do we begin?
The key is to focus on the statement to be proved; namely, C ⊆ A. (This is the
part following the word ‘then’ in an if-then statement; i.e. the conclusion of the
implication.) So we should apply our set inclusion strategy to C ⊆ A: we begin
by supposing that x ∈ C and will attempt to prove that x ∈ A.

c) Create a Venn diagram of two sets B and C, then draw set A

inside B ∩ C. From the picture, is it feasible that C ⊆ A?

Drawing on the intuition gained by the Venn diagram just constructed, we
realize that since x ∈ C it follows that x �∈ C. Hence by definition of intersection,
x �∈ B ∩ C either. We can now make the key deduction in the proof: since x
is outside the set B ∩ C but all of A is contained within B ∩ C, we know that
x �∈ A. This means that x ∈ A. Since x ∈ C implies x ∈ A we may conclude
that C ⊆ A, as desired.†

d) Can you touch your tongue and your nose?

A set is considered to be a subset of itself, so it is true that A ⊆ A, in the
same way that it is correct to write 5 ≤ 5. But should the empty set be counted
as a subset of A? The definition requires that every element of ∅ be contained
in A, but there are no elements of ∅ to which we may apply this condition.
Technically, we say that the condition is vacuously satisfied. The Mathematical
Outing above might provide a more compelling reason to declare that ∅ ⊆ A.

At times we may wish to exclude the option of taking the empty set as a
subset; in this case we use language like “Let A be a nonempty subset of B.”
On the other hand, to rule out the option of selecting all of B as a subset,
we would say “Let A be a proper subset of B.” We indicate this by writing
A ⊂ B, in the same way that we use < rather than ≤ when the two objects
being compared are not permitted to be equal.

e) How many subsets of {1, 2, 3} are both nonempty and proper?
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As an illustration, let A = {2, 4, 6, 8, . . .} be the set of even natural numbers,
let B = {1, 2, 4, 8, . . .} list the powers of 2, and let C = {6, 12, 18, 24, . . .} contain
the multiples of six. Comparing the elements within the various sets, we quickly
realize that every multiple of six is even but not vice-versa, hence C ⊂ A. In
addition, no multiple of 6 is a power of 2, hence B and C are disjoint; that is,
B ∩C = ∅. There is a single power of 2 that is odd, which is enough to prevent
B from being a subset of A, a fact which may be conveyed succinctly as B �⊆ A.
Deleting all the even numbers from set B singles out the lone offending odd
number, which is 1.

Removing all elements from a set B that belong to another set A creates
a new set: the set difference B −A.

Therefore we may write B −A = {1} for the sets described above. Alternately,
we might consider A−B = {6, 10, 12, 14, 18, . . .}, the even numbers that are not

powers of 2. Note that it is not necessary for one set to
be a subset of another to form their set difference. In
general, a set difference B−A may be described as “all
B that are not A.” A Venn diagram for the difference
B −A is shown at left. From this diagram it becomes
clear that we may also define B −A as A ∩B.

f) Using the sets defined above, describe the set A−C verbally and
also list its elements using curly brackets and an ellipsis.

g) Suppose that for certain sets A, B and X we have X ⊆ B − A.
What is the relationship between X and A? between X and B?

The collection of all subsets of A can be assembled into a single larger set.

We define the power set P(A) of a set A to be the set of all subsets of A,
including the empty set and the set A itself.

The motivation for this terminology stems from the fact that when A is a finite
set, there are exactly 2|A| subsets, so the cardinality of P(A) is a power of 2. To
explain this phenomenon, imagine building a subset of A. There are two choices
available for the first element of A: either include it in our subset or leave it out.
Regardless of our decision, we are now faced with the same two possibilities for
the second element—either include it in our subset or leave it out. Continuing
this reasoning for each element of A, we find that there are (2)(2) · · · (2) = 2|A|

ways to build a subset of A, as claimed.
The power set of A is a set whose elements are themselves sets, which takes

some getting used to. For starters, one has to pay attention not to mix up the
symbols ∈ and ⊆. Thus if A = {b, a, l, o, n, e, y} then it would be appropriate
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to write {n, o, e, l} ⊆ A, but not {n, o, e, l} ⊆ P(A). Since the subsets of A are
elements of P(A), we should instead write {n, o, e, l} ∈ P(A). A subset of P(A)
would look like { {n, o, b, l, e}, {b, a, y} }, for instance.

h) For the set A = {b, a, l, o, n, e, y}, write down a subset of P(A)
having three elements that are pairwise disjoint, but whose union is all of A.

i) Let A = {c, d, e} and let B = {a, b, c, d}. Determine the sets
contained in P(B −A) and the sets contained in P(B)− P(A).

Suppose that A and B are nonempty sets. As a slightly intricate but very
instructive example, let us demonstrate that every element of the power set
P(B−A) is contained in P(B)−P(A), with one exception. In other words, we
will show that P(B − A) is almost a subset of P(B)− P(A). The exception is
the empty set, for ∅ ∈ P(B−A) but ∅ �∈ P(B)−P(A). It is true that ∅ ∈ P(B),
but ∅ ∈ P(A) as well, so it is removed when we subtract P(A).

Now let X be a non-empty subset of B − A, so that X ∈ P(B − A). (We
write X instead of x, since we are referring to a set instead of an element.) We
will show that X ∈ P(B)−P(A) as well. Since X ⊆ B −A, each element of X
is a member of B but not of A. In other words, X is a subset of B, but X and
A are disjoint. It follows that X ∈ P(B) since X ⊆ B. But clearly X �∈ P(A)
since the elements of X are not in A. (Here is where we use the fact that X is
non-empty.) So when we subtract P(A) from P(B), the element X of P(B) is
not removed. Hence X ∈ P(B)− P(A), as claimed.†

a) The sets {m, a, i, n, e} and {t, e, x, a, s}, for instance.
b) We have A and B disjoint, A ⊆ B, and B ⊆ A, respectively.
c) Assuming that the circle representing B is on the left, draw a

smaller circle for A within the left circle but outside the right circle.
d) Of course you can! Just extend your hand so that one finger touches your tongue
and another finger touches your nose. The point of this seemingly irrelevant exercise
is to highlight the fact that we often use and interpret the word and in a careless
manner. If you tried to curl your tongue upwards to accomplish this activity, you were
trying to touch your tongue to your nose.

In the same way, it is easy to slip up by attempting to prove that C ⊆ A by writing
“Suppose that x ∈ C and x ∈ A.” But a conjunction is logically quite different from
an implication, dooming this proof from the outset. So be careful to phrase a set
inclusion proof as an implication—“We wish to show that if x ∈ C then x ∈ A.”
e) Six subsets of {1, 2, 3} are both nonempty and proper.
f) The set A−C consists of positive even numbers that are not multiples of 6, namely
the numbers {2, 4, 8, 10, 14, . . .}.
g) This means that X is a subset of B and that X and A are disjoint.
h) One answer could be {{b, o, y}, {a, l, e}, {n}}.
i) The sets {a, b}, {a}, {b}, ∅ make up P(B − A). On the other hand, P(B) − P(A)
consists of all sixteen subsets of B except for {c, d}, {c}, {d}, ∅.

If we include the empty set, the subsets of C3 are ∅, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3} and {1, 2, 3}. In this fashion we find that the number of subsets of C1 to C4

are 2, 4, 8 and 16 when we include the empty set. These powers of 2 are much more
appealing than the alternative, which suggests that ∅ ⊆ C2 should be true. Including
the empty set, there are 2n subsets of Cn.
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Exercises
32. Let A = {f, l, a, t}. To remove the letter l, do we write A− l or A− {l}?

33. Suppose that A ⊆ B. What is the relationship between sets A and B?

34. If A is a proper subset of B then what can be said of the set B −A?

35. Would it be correct to assert that ∅ ⊆ P(A)? Does it make sense to write
∅ ∈ P(A)? What is the difference between these two statements?

36. Let A = {x | −1 < x < 1}, B = {x | −2 ≤ x ≤ 2} and C = {x | −2 < x < 3},
where x ∈ R. Determine whether the following statements are true or false.
a) A ⊆ B and B ⊆ C

b) C ⊆ B or B ⊆ A
c) A− C is the empty set
d) C −B = {x | x = −2 or 2 < x < 3}
e) A and B are disjoint

37. Construct two finite sets A and B such that |B| = 7, |A| = 5 and |B−A| = 4.
(Your example shows that in general |B −A| �= |B|− |A|.)

38. Suppose that sets A and B satisfy |A| = 101, |B| = 88 and |B − A| = 31.
Determine |A−B|. (Hint: Use a Venn diagram.)

39. Let A = {g, n, a, r, l, y}. What is the only set that is both a subset of A and
disjoint from A?

40. Let B = {b, r, i, d, g, e}. How many nonempty subsets of B are disjoint from
the set {s, t, r, e, a,m}?

41. If C = {s, a, t, i, n}, then how sets D ∈ P(C) satisfy |D| = 2?

42. Suppose that A = {b, i, s, m, a, r, c}. How many subsets of A contain m?

43. Given sets B = {t, u, r, k, e, y} and A = {b, r, u, t, e}, compute |P(B)−P(A)|.

Writing
44. For sets A and B, show that A ∩B and B −A are disjoint. Give a written
proof that does not rely on a Venn diagram.

45. Given sets A, B and C, explain why B ∪ C and (A ∩ B) ∪ C are disjoint.
Do not rely on a Venn diagram in your proof.

46. Prove that (A ∪B) ∩ C ⊆ A ∪ (B ∩ C). Give a written proof that does not
rely on a Venn diagram, and also illustrate this result with a Venn diagram.

47. Prove that (A−B)−C ⊆ A− (B −C). Give a written proof that does not
rely on a Venn diagram, and also illustrate this result with a Venn diagram.

48. Demonstrate that if B ⊆ C then A ∪ C ⊆ A ∪B.

49. Suppose that A, B and C are sets such that A−B ⊆ C. Show that in this
case C ⊆ A ∪B. Do not rely on a Venn diagram in your proof.
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50. For sets A and B, explain why P(A) ∪ P(B) ⊆ P(A ∪B).

51. For sets A and B, prove that P(A) ∩ P(B) = P(A ∩B).

52. Establish that P(B)− P(A) = P(B)− P(A ∩B) for any sets A and B.

53. Let C be a set of Halloween candies. Suppose that Aaron helps himself to
some (possibly none) of the candies, and then Betty does the same with what
remains. (There may well be candies left over at the end of this process.) Prove
that there are 3|C| ways for the candy distribution to take place.

2.4 Cartesian Products

It is not at all unusual for a single object, mathematical or otherwise, to have two
or more numbers associated with it. For instance, at each visit a pediatrician will
record both a child’s height in inches and his weight in pounds. This information
can be succinctly presented as an ordered pair of numbers, as in (42, 57) for a
solid seven-year old. We can think of the 42 as an element from the set of all
possible heights, and the 57 as an element from the set of all possible weights.

Given two sets A and B, their Cartesian product A × B is the set
consisting of all ordered pairs (a, b) with a ∈ A and b ∈ B. When A
and B are both finite sets, we have |A×B| = |A| · |B|.

Perhaps the most familiar example of a Cartesian product is the set of points
in the Cartesian plane. Such a point has an x-coordinate and a y-coordinate,
which are presented as the ordered pair (x, y). Each coordi-
nate is a real number, so the Cartesian plane is the product
R× R, sometimes written as R2 for short.

Anyone who has played a game of Battleship has dealt
with a Cartesian product. The square game board is di-
vided into a grid, with rows labelled ‘A’ through ‘J’ and
columns numbered 1 to 10. Each location on the board
is referred to by a letter and a number, as in “Is (C,7)
a hit?” From a mathematical perspective, the locations
on the game board represent the Cartesian product of the
sets A = {A,B,C,D,E,F,G,H, I, J} and B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The
elements of this Cartesian product are the pairs

(A, 1) (A, 2) (A, 3) · · · (J, 9) (J, 10).

These ordered pairs are arranged in a 10 × 10 grid, so there are 100 of them,
which agrees with the fact that |A×B| = |A| · |B| = 10 · 10 = 100.

a) Let A = {10, 20, 30} and let B = {1, 2, 3, 4}. Find an organized
way to list all the elements of A×B. Based on your list, why does it make sense
that |A×B| = |A| · |B|?
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Mathematical Outing � � �
The game of PairMission is played using the or-
dered pairs of a Cartesian product. To begin, two
players select disjoint finite sets A and B, such as
A = {a, b, c, d} and B = {1, 2, 3}. The players
alternate turns writing down ordered pairs in a column, with the rule that a
play is “pairmissible” as long as the letter and number in the pair have not both
been used earlier in the game. The winner is the last person able to write down
a legal ordered pair. For example, the sequence of moves

(a, 2) (b, 2) (a, 3) (c, 2)

is possible. The first player could now win the game by writing down (d, 1),
since there are no further legal moves.

Play a few rounds of PairMission to get a feel for the game. How can one
quickly ascertain whether the game is over? Now explain how the first player
can guarantee a win when A = {a, b, c} and B = {1, 2, 3}. Then demonstrate
that the second player can force a win for A = {a, b, c, d} and B = {1, 2, 3}.
After analyzing a few more games, make a conjecture concerning which player
has a winning strategy for any pair of sets A and B.

To reinforce these ideas, suppose now that A = {x ∈ R | 3 ≤ x ≤ 6} and
B = {y ∈ R | 1 ≤ y ≤ 8}. Then A×B would consist of all ordered pairs (x, y)
of real numbers for which 3 ≤ x ≤ 6 and 1 ≤ y ≤ 8.
The most natural way to visualize the collection of all
such ordered pairs is as a subset of the Cartesian plane.
The points (x, y) in A×B constitute a solid rectangle
with width 3 and height 7, pictured in the diagram.

b) Use a diagram to help illustrate why
the assertion (A×C) ∪ (B ×D) = (A ∪B)× (C ∪D)
is false. How could one modify the left-hand side to
create a valid set identity?

To indicate the sorts of steps needed to prove a statement about Cartesian
products, we will show that (A×C)∪ (B ×D) ⊆ (A∪B)× (C ∪D). We must
show that every element of the first set is also a member of the second one. But
now the sets are Cartesian products, so we represent a generic element as (x, y)
rather than just x. Thus we suppose that (x, y) ∈ (A × C) ∪ (B × D). This
means that either (x, y) ∈ (A × C) or (x, y) ∈ (B × D), so we must consider
two separate cases. On the one hand, if (x, y) ∈ (A × C) then by definition
x ∈ A and y ∈ C. But since x ∈ A then clearly x ∈ A ∪B, and similarly y ∈ C
implies that y ∈ C ∪D. Therefore (x, y) ∈ (A ∪B)× (C ∪D). The case where
(x, y) ∈ (B ×D) is entirely analogous, so we are done.†



2.4. CARTESIAN PRODUCTS 41

c) Suppose that A = {1, 2} and B = {1, 2, 3}. Write out the elements
of A × B and B × A. Do we obtain the same ordered pairs in each case? In
other words, is A×B = B ×A?

Since the order in which elements are listed in an ordered pair matters, in
general it is not the case that A×B and B × A are the same set. However, in
a few special cases these two Cartesian products do consist of exactly the same
set of ordered pairs. The first possibility is that B = ∅, for in this case both
A×B and B ×A are the empty set.

d) Why is it the case that if B = ∅ then A×B = ∅ as well?

By the same reasoning, both Cartesian products are empty when A = ∅ as well.
If both A and B are nonempty, there is only one other way to ensure that

A×B = B×A. To discover what this condition might be, let’s take any elements
x ∈ A and y ∈ B. (This is possible since neither A nor B are the empty set.) So
we would have (x, y) ∈ A×B. But since A×B = B × A, we could then write
(x, y) ∈ B × A, which means that x ∈ B and y ∈ A. In summary, we deduce
that if x is any element of A then x ∈ B also, and furthermore that if y is any
element of B then y ∈ A. But this is exactly our criteria for showing that two
sets are equal, so we conclude that we must have A = B. Clearly this condition
works, for both sides of A×B = B ×A reduce to just A×A.

By the way, taking the Cartesian product of a set with itself is a fairly
common occurrence in mathematics; we have already seen one example above
when we wrote the plane as R× R. The set A× A will also play an important
role when we discuss relations and functions in a later chapter.

a) List all the ordered pairs in a three by four table. The top row
would contain (10, 1) (10, 2) (10, 3) (10, 4), and so on.
b) Replace the left-hand side by including two extra Cartesian prod-

ucts in the union: (A× C) ∪ (A×D) ∪ (B × C) ∪ (B ×D).
c) The ordered pairs are not identical; for instance, (1, 3) ∈ A×B but (1, 3) �∈ B ×A.
Thus A×B �= B ×A for these sets.
d) If there are no elements in B, then there is no way to create an ordered pair (x, y)
with y ∈ B.

The game is over as soon as all available letters and numbers appear at least once
somewhere in the list of moves. When A = {a, b, c} and B = {1, 2, 3}, suppose the first
player writes down (a, 1). If the second player matches neither of these characters,
say by playing (b, 3), then the first player should take the remaining two characters,
which are (c, 2) to win the game. However, if the second player does match one of
the characters, say by playing (b, 1), then the first player should continue to match
that character by playing (c, 1). The game must now last for exactly two more moves,
causing the first player to win in this scenario as well.

Analysis of the game with A = {a, b, c, d} and B = {1, 2, 3} is left to the reader.
In general, it turns out that the second player has a winning strategy if at least one
of |A| and |B| is even, while the first player can always win if both |A| and |B| are
odd. (Can you figure out the winning strategies?) Finally, try to find a nice way to
represent this game by putting markers on a rectangular grid whose rows are labeled
with the letters in A and whose columns are labeled by the numbers in B.
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Exercises
54. What can we deduce about sets A and B if A×B = ∅?

55. Write the definition of the Cartesian product A×B using bar notation.

56. Explain how a standard deck of cards illustrates a Cartesian product.

57. Let U = {1, 2, . . . , 9} be the universal set, and let A = {n | n ∈ U, n is odd}
and B = {n | n ∈ U, n is a perfect square}. Compute the cardinality of
a) U × U d) A×B
b) A×B e) (A ∪B)× (A ∩B)
c) A×B f) (A−B)× (B −A)

58. Do you believe that A×B = A×B based on your answers to the previous
exercise? Why or why not?

59. Let S be the subset {(x, y) | x2 + 2y2 = 10} of R2. What is the common
name for this mathematically defined set?

60. Suppose C = {w | 1 ≤ w ≤ 3} and D = {w | 2 ≤ w ≤ 5}. Then C ×D is a
subset of the Cartesian plane R× R.
a) Sketch the region corresponding to C ×D and describe its shape.
b) Draw the subset D × C on the same set of axes.
c) Use your diagram to determine (C ×D) ∩ (D × C).

61. Define the sets A = {s, c, a, m, p, e, r}, B = {p, r, a, n, c, e}, C = {1, 2, 3, 5, 8}
and D = {2, 3, 5, 7, 11, 13}. Describe the intersection (A× C) ∩ (B ×D).

62. Craft a verbal description of the Cartesian product A×B × C.

63. Suppose that A = {1, 2, 3, 4, 5}, B = {a, b, c, d, e, f} and C = {•, �, �}. How
many elements are there in the set A×B × C?

Writing
64. Show that for two sets A and B within some universal set U , it is the case
that A×B ⊆ A×B.

65. Prove that A× (B ∪C) = (A×B)∪ (A×C) for any three sets A, B and C.

66. Make and prove a conjecture regarding the relationship between the sets
A× (B − C) and (A×B)− (A× C).

67. Demonstrate that (A×C)∩ (B×D) = (A×D)∩ (B×C) for any four sets
A, B, C and D.

68. The intersection (A×B)∩ (B×A) can be written as the Cartesian product
of a certain set with itself. Find, with proof, an expression for that set.

69. Let A = {1, 2, 3, . . . , 10}. Prove that if we select any twenty ordered pairs
from A×A, then we can always find two of the chosen pairs that give the same
sum when the numbers within the pair are added together.

70. Prove that the game of PairMission described in the Mathematical Outing
for this section will end after at most |A| + |B|− 1 moves.
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2.5 Index Sets

For sake of illustration, consider the set of all words that contain the letter ‘a’.
For our purposes a word may be formed from any finite string of lower case
letters from our alphabet, such as ‘gargantuan’ or ‘scrambleflopsy’ or ‘sjivkavl.’
Naturally we would also be interested in the set of all words that contain the
letter b, or the letter c, and so on. In this sort of situation it makes sense to
name each set in a manner that reflects the letter on which it depends.

To accomplish this task we employ subscripts. Thus we let Wa be the set
of all words containing the letter a, and similarly for Wb through Wz. The
common variable name W reflects the fact that each set contains words.

The subscripts a, b, . . . are known as indices; the set I = {a,b, c, . . . , z}
of all indices is called the index set. The collection of all the sets Wa

through Wz comprises a family of sets, in the sense that they are re-
lated by a common definition. It may help to remember that each index
indicates a particular set in the family.

a) The set {. . . ,−10,−5, 0, 5, 10, . . .} consists of all integers that are
divisible by 5. Of course, there is a whole family of such sets. Decide on a name
for these sets and identify the index set.

Observe that we are not introducing any new set operations in this section.
Rather, we are describing a scheme for organizing related sets. But we are free
to apply set operations to indexed sets—they are just sets, after all. Thus Wp

is the set of words which do not contain the letter p, so ‘rambunctious’ ∈ Wp,
for instance. Furthermore, ‘chocolate’ ∈ Wc ∩Wt and ‘zamboni’ ∈ Wz −We.

It may come as a surprise to learn that the intersection of all the sets Wα

for α ∈ I is non-empty. As you might expect, the intersection of an indexed
collection of sets consists of those elements that appear in every single set.
We could write their intersection as Wa ∩ Wb ∩ · · · ∩ Wz, but this notation
is cumbersome at best. Instead we adopt the notation

�
α∈I Wα. Hence our

definition of the intersection of the family of sets Wα can be shortened to
�

α∈I

Wα = {x | x ∈ Wα for all α ∈ I}.

If this intersection is to be non-empty, then there must exist a word that contains
every letter of the alphabet at least once! This does seem surprising, until we
remember that in the present setting ‘words’ are arbitrary strings of letters, not
necessarily English words. For instance, we have

‘aquickfoxjumpsoverthelazybrowndog’ ∈
�

α∈I

Wα.

b) What is
�

α∈I

Wα ?
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In order to have other examples of indexed sets at our disposal, we now
formally define two frequently encountered sets of real numbers.

An open interval is a set of real numbers of the form {x ∈ R | a < x < b},
for fixed real numbers a < b, while a closed interval is a set of the form
{x ∈ R | a ≤ x ≤ b}. These sets are usually written compactly as (a, b)
and [a, b], respectively.

Although one might worry that the ordered pair (3, 7) could be confused with
the open interval (3, 7), in practice this hardly ever occurs. Several examples of
open and closed intervals are pictured below. It is often useful to have a mental
picture such as this in mind when working with intervals.

c) What are the possible outcomes that may be obtained by inter-
secting two closed intervals? What are the possibilities when working with open
intervals instead?

Having introduced the notion of an interval, we are now prepared to consider
an entire family of open intervals. Let Br be the set of all numbers between −1
and some positive real number r. In other words, define Br = (−1, r). The first
two intervals pictured above are members of this family; namely, B3 and B4.5.
In this case the index set is J = {r | r ∈ R, r > 0}. It is important to make
a distinction between the index set and the other sets belonging to the family.
Think of the index set J as the master set: it catalogs all the other sets, since
there is one set Br for each r ∈ J .

d) Based on the definition of Br, which of the following are correct?
i. B3 ⊂ B7 ii.

√
10 ∈ Bπ iii. B4.5 and B5.2 are disjoint.

In the same manner as before we can form the intersection
�

r∈J Br of the
entire family of open intervals. The challenge in this case is not so much under-
standing the notation as determining the answer. Clearly − 1

2 is contained in
every such interval, as is −0.1. In fact, every real number from −1 up to and
including 0 is contained in the interval Br for all r ∈ J . (Convince yourself of
this fact.) But no positive real number is contained in every set Br for all r > 0.
For example, consider the number .0001. We need only select a smaller positive
number, such as r = .000001, in order to find a set that does not contain .0001.
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Mathematical Outing � � �
For each n ∈ N, let Cn be the set of counting
numbers from 1 to n, so that

Cn = {1, 2, . . . , n}.

To begin, show that
�∞

n=1 Cn = N. (This is a set equality, so explain why
every element of

�∞
n=1 Cn is in N and vice-versa.) What do subsets of Cn look

like? In other words, describe the elements of P(Cn). Next describe the set�∞
n=1 P(Cn) in a single complete sentence. Now for the stumper: is this set

the same as P(N)? Why or why not?

And since .0001 �∈ B.000001, it is not contained in the intersection of all the Br.
We conclude that �

r∈J

Br = {x | − 1 < x ≤ 0}.†

Just as we can find the intersection of a family of sets, we can also find their
union. For example, consider the union of the sets Wα, where α represents a
letter of the alphabet. Predictably, such a union is written in the form

�
α∈I Wα,

and consists of those words that are members of at least one of the sets Wα.
But every word is a member of some Wα, since every word contains at least one
letter, so the union is the set of all words.

e) Determine
�

r∈J Br, writing your answer using bar notation.

It is quite common for a family of sets to be indexed by simply being num-
bered. Whenever our index set is the natural numbers (or a subset thereof)
there is a more informative way of writing an intersection or union, reminiscent
of sigma notation. For instance, imagine that we had a family A1, A2, A3, . . .
of sets. We can express the intersection of sets A3 through A6 as

6�

n=3

An = A3 ∩A4 ∩A5 ∩A6.

Similarly, the union of sets A1 through A7 is written
�7

n=1 An, so that

7�

n=1

An = A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6 ∪A7.

If we wish to take the intersection of all the sets in the family we employ the
notation

�∞
n=1 An, just as is done for sigma notation when expressing an infinite

series. Predictably, an infinite union is written as
�∞

n=1 An. This notation is
quite versatile; thus the union of all the even-numbered sets can be written�∞

n=1 A2n, while the intersection of all odd-numbered sets is
�∞

n=1 A2n−1.
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a) Let Mn be the set of all integers that are multiples of n. The
index set is N, since we have one set Mn for each n ∈ N.
b) The empty set, since no word omits every letter of the alphabet.

c) The intersection of two closed intervals is either a closed interval, a point, or the
empty set. Two open intervals intersect in either an open interval or the empty set.
d) i. True ii. False, since

√
10 > π iii. True

e) Every real number x > −1, no matter how large, is a member of some set Br. For
example, 1000000 is an element of B1000001. Hence

S
r∈J Br = {x | x > −1}.

Argue that if x ∈
S∞

n=1 Cn then x ∈ Ck for some k, which means that x is a
counting number from 1 to k, so x ∈ N. Conversely, if x ∈ N then x is a counting
number, say x = k. But then x ∈ Ck (and Ck+1, etc.), and hence x ∈

S∞
n=1 Cn.

Elements of P(Cn) are subsets of {1, 2, . . . , n); i.e. sets all of whose elements are
counting numbers from 1 to n. Hence

S∞
n=1 P(Cn) consists of all finite sets of counting

numbers. And therein lies the rub, for P(N) contains all subsets of N, including infinite
ones. More concretely, {1, 3, 5, 7, . . .} belongs to P(N) but not to

S∞
n=1 P(Cn).

Exercises
71. Consider the set of points in the plane a distance r from the origin, where r
is a particular real number not smaller than 2. Create an appropriate name for
this family of sets and identify the index set.

72. In the previous exercise, use compact notation to indicate the union of all
the sets for which 3 ≤ r ≤ 5. Also, draw a sketch of this union.

73. Let Ak be a family of sets, one set for each element k ∈ I for some index
set I. Write a definition for the union of this family using bar notation, as was
done for intersection earlier in this section.

74. Let Wα be the family defined in this section. Give an example of an element
in each of the following sets. (Any string of letters will do, but ordinary English
words are cooler.)
a) Wx −We c) Wa ∩We ∩Wo ∩Wu

b) Wj ∪Wq ∪Wv d)
�

α∈I� Wα, where I � = {a,b, c,d, e, f}

75. Give a description of the elements of
�

α∈I� Wα, where I � = {a,b, c,d, e, f}.

76. Write the following sets using sigma-style notation.
a) A8 ∪A9 ∪A10 ∪A11 ∪A12

b) B3 ∩B6 ∩B9 ∩ · · ·

c) C2 ∪ C3 ∪ C4 ∪ · · ·

d) D5 ∩D6 ∩D7 ∩D8

77. Let Dn be the set of positive divisors of a natural number n. Thus D1 = {1}
and D10 = {1, 2, 5, 10}. Find the following sets, writing them in list form.
a)

�16
n=14 Dn c)

�100
n=1 Dn

b) D100 −D50 d)
�∞

n=1 Dn
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78. Let J = {r | r ≥ 1}, and for each real number r ∈ J define Cr to be the
closed interval [r, 2r]. Sketch the sets C4, C5 and C6 on a number line. Based
on your sketch, find

�6
k=4 Ck and

�6
k=4 Ck, writing your answer in bar notation.

79. Using the notation of the previous exercise, determine
�

r∈J Cr and
�

r∈J Cr.

80. Continuing the previous exercises, let J � = {x | 3 ≤ x ≤ 4.5}. Now determine�
r∈J� Cr and

�
r∈J� Cr.

81. Let Mn be the set of integers that are multiples of n, where n is a natural
number. For instance, M5 = {. . . ,−10,−5, 0, 5, 10, . . .} is the set appearing
earlier in this section. Determine M3 ∩M5, M4 ∩M6 and M10 ∩M15 ∩M20.

82. Continuing the previous exercise, find a succinct way to describe the inter-
section Ma ∩Mb, where a and b are positive integers. Also, what is

�
n∈N Mn?

83. Let Br = (r, 10) for r ≤ 8 be a family of open intervals. Determine
�

2<r<4

Br,
writing your answer in bar notation.

84. For the sets Br in the previous exercise, create an intersection which results
in the open interval (6, 10).

Writing

85. Let At be a family of sets, where t ∈ I. Prove that
�

t∈I

At =
�

t∈I

At.

86. For each real number r in the open interval (0, 1) let Br be the open interval
(5 + r, 8 + r). Prove that

�

r∈(0,1)

Br = [6, 8].

87. Let Mn be the set of integers that are multiples of n, where n is a nat-

ural number. For instance, M5 = {. . . ,−10,−5, 0, 5, 10, . . .}. Determine the

elements of the set Z−
∞�

n=1

M2n+1 and explain why your answer is correct.

2.6 Reference

As before, the purpose of this section is to provide a condensed summary of
the most important facts and techniques from this chapter, as a reference when
studying or working on material from later chapters. We also include a list of
the various strategies we have developed for proving statements about sets.

• Vocabulary set, element, empty set, cardinality, bar notation, intersection,
union, universal set, complement, equal sets, set identity, Venn diagram, subset,
superset, disjoint, nonempty, proper subset, set difference, power set, Cartesian
product, ordered pair, indices, index set, family, open interval, closed interval

• Sets Sets may be described via a verbal description or by listing their ele-
ments between curly brackets {· · ·}. The order in which elements are listed does
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not matter, as long as each element is listed only once. One can also employ
bar notation, which involves writing down the objects in the set followed by a
description of those objects, separated by a bar, as in {n2 | n ∈ N, n odd} for
the squares of the odd numbers. The cardinality of a finite set is the number of
elements in the set; hence |∅| = 0. The symbols N, Z, Q, R and C refer to the
natural numbers, integers, rational, real, and complex numbers. Observe that
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

• Set Operations We may take the union, intersection, difference or Cartesian
product of two sets, denoted by A∪B, A∩B, A−B and A×B. We may also
take the complement of a set relative to some universal set. Seemingly different
combinations of sets may produce the same result, like A−B = A ∪ B, giving
a set identity. A Venn diagram provides a useful way to visualize combinations
of sets and to prove set identities involving two or three sets.

• Power Sets The power set of A, written P(A), is the set of all subsets of A,
including ∅ and A. When A is finite, there are 2|A| subsets of A, and therefore
2|A| elements of P(A). If X is a subset of A then we would write X ⊆ A or
X ∈ P(A), but not X ⊆ P(A). If the subset X is not equal to all of A then we
call X a proper subset, and write X ⊂ A.

• Cartesian Products The Cartesian product A × B is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. When A and B are both finite, there are
|A| · |B| such ordered pairs. The Cartesian plane is R × R, or R2 for short.
One effective way to visualize a Cartesian product is to organize its elements
into a two-dimensional array, with the rows and columns corresponding to the
elements of A and B. The Cartesian product is not commutative, meaning that
in general A×B �= B ×A.

• Index Sets When a collection of sets that depend on a particular quantity
are defined in a common fashion we have a family of sets, such as Ak for k ∈ I.
The index set I keeps track of all the possible values of the quantity. There is
one set Ak for each element k ∈ I. We may form the intersection or union of
the entire family by writing

�
k∈I Ak or

�
k∈I Ak. When the sets are numbered,

an alternate sigma-style notation may be employed, as in
�5

k=1 Ak or
�∞

k=1 Ak.

Proof Strategies

The paragraphs below briefly outline strategies for approaching various asser-
tions involving sets, complete with a template for writing a proof. Keep in mind
that no such list can possibly be comprehensive; the reader will need to adapt
the strategies and templates here to suit the particular statement to be proved.

∗ Unions and Intersections To show that an element is contained in the union
of two sets, it suffices to show that the element is in either set. However, to
demonstrate that the element is in their intersection, you must prove that the
element is contained in both sets.
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On the flip side, if we are given an element in an intersection, we know it is
contained in both sets. It is less helpful if we only know that an element is in
the union of two sets, since then it may be in either set. In this situation we
resort to a proof by cases. If the argument for the two cases is essentially the
same, it is acceptable to omit the second case, as illustrated below. (But if the
second case is not analogous to the first, be sure to write it out.)

One could write “Since x ∈ A∪B, we know that either x ∈ A or x ∈ B. In
the first case we have x ∈ A, so [main argument here], which shows that
[conclusion]. The case x ∈ B is analogous, again giving [conclusion].”

∗ Set Equality To prove that two sets are equal, show that each element in the
first set is included in the second set, and vice-versa. These two arguments are
usually given in separate paragraphs, unless the proofs are relatively short or
very similar in nature.

“We begin by showing that if x ∈ [first set] then x ∈ [second set]. [Proof
of this statement.] Conversely, it is also true that if x ∈ [second set]
then x ∈ [first set], because [proof of this statement]. Therefore we may
conclude that [first set] = [second set].”

Note that for set identities involving two or three sets, it is also sufficient to
create Venn diagrams for each set, justifying in full sentences why you shaded
in particular regions, and then observe that the two diagrams are identical.
This amounts to a proof by cases, presented visually. This approach applies to
any identity involving three or fewer sets, unions, intersections, complements,
and set differences. However, don’t use Venn diagram proofs for statements
involving four or more sets, power sets, or Cartesian products.

∗ Set Inclusion To prove that one set is contained in another, show that if
some object is an element of the first set then it is also an element of the second
set. Be aware that it is tempting to begin a proof that A ⊆ B by writing “We
must show that x ∈ A and x ∈ B.” This is a logically invalid approach. To
demonstrate that A ⊆ B we must prove an implication: if x ∈ A then x ∈ B.

A sample argument reads as follows “Suppose that x ∈ [first set]. We
must show that x ∈ [second set]. [Main argument here], which shows that
x ∈ [second set]. It follows that [first set] ⊆ [second set].”

∗ Set Inequality and Disjoint Sets To prove that two sets are not equal, it
suffices to produce a single element that is in one of the sets but not the other.

“To see that these sets are not necessarily equal, consider [give examples
of sets]. Then the element x = [counterexample] is in the first set, but
not the second, because [reasons]. Therefore the sets are not equal.”

To prove that two sets are disjoint, show that given any element of the first set,
it cannot also be an element of the second set.

“To prove that the given sets are disjoint, consider any x ∈ [first set].
Then x �∈ [second set] because [reasons]. Therefore the sets are disjoint.”
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� Tip � When deciding what strategy to apply to a particular proof, you must
focus on what you are being asked to prove. (This is the statement following the
word ‘then’ in most problems.) Don’t get side-tracked by other information at
this stage. For instance, suppose that we wish to prove that

Claim: For all sets A and B, if A−B = ∅ then P(A) ⊆ P(B).

At first glance there are quite a few distracting features to this question: a set
equality, a set inclusion, an empty set, power sets, and so forth. With practice,
you will learn to immediately concentrate on the expression P(A) ⊆ P(B) since
it follows the word ‘then.’ We now recognize that we are being asked to prove
a set inclusion, so we can safely write down the first sentence:

Proof: We wish to prove that P(A) ⊆ P(B). Therefore let X ∈ P(A); we
wish to show that X ∈ P(B).

From our work with power sets we know how to interpret X ∈ P(A), so we can
also safely write down the second sentence of the proof.

Proof: We wish to prove that P(A) ⊆ P(B). Therefore let X ∈ P(A); we
wish to show that X ∈ P(B). Equivalently, we have X ⊆ A and we wish to
show that X ⊆ B.

The proof is now off to a promising start, which is at least a third of the battle.
We leave the details of the remainder of the proof to the reader. There is a hint
as to how to proceed in the answers at the back.

Sample Proofs
The following proofs provide concise explanations for results discussed within
this chapter. They are meant to serve as an illustration for how proofs of
similar statements could be phrased. The boldface numbers indicate the section
containing each result; the location of that result within the section is marked
by a dagger (†).

2.2 For sets A and B prove that A ∩B = A ∪B.

Proof We begin by showing that each element of A ∩B is contained in A∪B.
So suppose that x ∈ A ∩B; this means that x �∈ A ∩ B. Since x is not in their
intersection, it must lie outside of at least one of A or B, hence x �∈ A or x �∈ B.
This means that x ∈ A or x ∈ B, giving x ∈ A ∪B.

On the other hand, suppose that we have x ∈ A∪B. This means that x ∈ A
or x ∈ B, so x �∈ A or x �∈ B. Since x is not contained in at least one of A
or B, it does not reside in their intersection, thus x �∈ A ∩ B. It follows that
x ∈ A ∩B, as desired. Since the elements of each set are contained in the other,
we conclude that A ∩B = A ∪B.

2.3 For any sets A, B and C, prove that if A ⊆ B ∩ C then C ⊆ A.
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Proof We wish to prove that C ⊆ A, so we will show that whenever x ∈ C then
x ∈ A as well. Thus suppose that x ∈ C, which means that x �∈ C. It follows
that x �∈ B ∩ C either, since x does not belong to both sets. But if x �∈ B ∩ C
while A ⊆ B ∩C then we may deduce that x �∈ A, because x lies outside B ∩C
while all of A is contained within B ∩ C. Therefore x ∈ C implies that x �∈ A,
i.e. x ∈ A, giving C ⊆ A.

2.3 Given nonempty sets A and B, prove that every set in P(B−A) is contained
in P(B)− P(A), except for the empty set.

Proof To begin, we will consider the empty set. We know that ∅ ∈ P(B − A)
since the empty set is a subset of every set. However, the empty set is not in
P(B)− P(A). It is true that ∅ ∈ P(B), but ∅ ∈ P(A) as well, so it is removed
when we subtract P(A) from P(B).

Now suppose that X is any nonempty set in P(B−A). We wish to argue that
X ∈ P(B)−P(A), which means we must prove that X ∈ P(B) but X �∈ P(A).
By definition of power set, this is the same as showing that if X ⊆ B −A then
X ⊆ B but X �⊆ A. So suppose that X ⊆ B − A. This means that every
element of X is in B − A, i.e. is in B but not in A. Since every element of X
is in B we do have X ⊆ B. However, since all elements of X are not in A (of
which there is at least one, since X is nonempty), we also have X �⊆ A. Hence
if X ∈ P(B −A) it follows that X ∈ P(B)− P(A), as claimed.

2.4 Prove that (A×C)∪ (B×D) ⊆ (A∪B)× (C ∪D) for sets A, B, C and D.

Proof To prove this set inclusion we show that if (x, y) ∈ (A × C) ∪ (B ×D)
then (x, y) ∈ (A ∪ B)× (C ∪D). So suppose that (x, y) ∈ (A× C) ∪ (B ×D).
Since (x, y) is an element of a union of sets, we know that either (x, y) ∈ A×C
or (x, y) ∈ B ×D. We consider each possibility separately. In the first case we
have (x, y) ∈ A× C, hence x ∈ A and y ∈ C. But this implies that x ∈ A ∪ B
and y ∈ C ∪D by definition of union. It follows that (x, y) ∈ (A∪B)× (C ∪D),
as desired. The proof of the second case in which (x, y) ∈ B ×D is analogous,
so we are done.

2.5 Let Br represent the open interval (−1, r) and let J be the set of positive
real numbers. Describe, with proof, the set

�
r∈J Br.

Proof We claim that the intersection of this family consists of all −1 < x ≤ 0.
First, if x ≤ −1 then x �∈ Br for any r according to the definition of Br, and
thus x is clearly not in their intersection. Furthermore, if −1 < x ≤ 0 then
x ∈ Br for every positive real number r, since Br consists of all real numbers
between −1 and r, which certainly includes any x in the range −1 < x ≤ 0.
Hence these values of x belong to the intersection

�
r∈J Br. Finally, given any

x > 0, choose r = 1
2x. Then r is a smaller positive real number, so x �∈ Br for

this particular r. Since x is absent from at least one such set, it does not belong
to their intersection. In summary,

�
r∈J Br = {x ∈ R | − 1 < x ≤ 0}.


