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Abstract

A problem from the 1988 IMO asserts that for positive integers a and b
the set of integral values assumed by (a2 + b2)/(ab + 1) is exactly the set
of positive squares. We present an extension of this result involving a
rational function in three variables whose integral values consist of pre-
cisely those numbers expressible as a sum of two positive squares. This
immediately implies that a certain Diophantine equation has no solutions
in positive integers, a result that we also prove directly. We conclude with
an extension to four variables.
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1 History

In July 1988 the twenty-ninth International Mathematical Olympiad was held in
Canberra, Australia. Due to a relatively dismal performance on a qualifying test,
this author, who had entertained hopes of participating in the event, remained
home and thus passed up the chance to work on one of the most legendary IMO
problems ever posed. The final question set for the exam read as follows.

1988 IMO, Problem 6. Let a and b be positive integers such that ab + 1
divides a2 + b2. Show that

a2 + b2

ab + 1
is the square of an integer.

According to Arthur Engel [1], the jury ultimately decided to include this
question on the exam despite the fact that it had stymied every member of the
problem committee. It has since gained the reputation of being one of the most
difficult problems ever to appear on an IMO. Of the 268 contestants present
that day only fourteen earned more than three of the available seven points for
their attempts to solve it.
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The problem combines the simplicity of statement, elegance of result, and
surprising level of difficulty that lures mathematicians to the field of number
theory. Naturally it has spawned a variety of similarly intriguing results. In [6]
Robert Weber points out that when a, b ∈ N the set of integral values for

a2 + b2 + 1
ab + 1

(1)

consists of exactly those integers of the form t2 + 1 for t ∈ N, while the set of
integral values for

a2 + b2

ab− 1
(2)

contains only the single number 5. As shown in [2], when a, b, c ∈ N the set of
integral values for the expression

(a + b + c)2

abc
(3)

is precisely {1, 2, 3, 4, 5, 6, 8, 9}. Furthermore, at the end of [3] the reader is
invited to investigate integral values assumed by the rational function

a2 + b2 + c2

ab + ac + bc + 1
, (4)

while the paper [7] presents a method for finding all integral values taken on by
the rational function

a2 + b2 + c2

abc
. (5)

Blended together, these last two examples provide us with the rational function
to which we now turn our attention.

Theorem 1.1 Let a, b and c be positive integers such that abc + 1 divides
a2 + b2 + c2. Then

a2 + b2 + c2

abc + 1
is the sum of two positive squares.

Contrary to what one might expect, the author stumbled across this result while
casting about for triples of integers satisfying interesting divisibility properties,
and only gradually realized that it was a generalization of the IMO problem
he had missed the opportunity to grapple with over two decades previously.
Nonetheless, the discovery of a proof held a certain redemptive quality. The
purpose of this note is to present the proof.
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2 Main Result

A computer search turns up a total of 112 triples (a, b, c) in the range 1 ≤ a ≤
b ≤ c ≤ 99 for which a2 + b2 + c2 is a multiple of abc + 1. Nearly one hundred
of them belong to the infinite family a = 1, b = t, c = t + 1 for t ∈ N. Indeed,
one quickly verifies that

12 + t2 + (t + 1)2

(1)(t)(t + 1) + 1
= 2, (6)

which is a sum of two positive squares, as claimed. However, fourteen more
exotic triples also surface, including

12 + 42 + 682

(1)(4)(68) + 1
= 17,

22 + 32 + 782

(2)(3)(78) + 1
= 13,

52 + 62 + 592

(5)(6)(59) + 1
= 2. (7)

Note that perfect squares do not appear as quotients except via Pythagorean
triples, since quotients must be the sum of two positive squares. So no quotient
is equal to 16, but we can obtain 25, for instance when a = 3, b = 4, c = 300.

We now commence with the proof, which employs a technique that has come
to be known as “Vieta jumping,” combined with a descent argument.

Proof: Given positive integers a ≤ b ≤ c for which abc+1 divides a2 +b2 +c2, let
their quotient be k. Replacing c with the variable x, we see that the equations

a2 + b2 + x2

abx + 1
= k ⇐⇒ x2 − (kab)x + (a2 + b2 − k) = 0 (8)

have one solution x = c. Since the sum of the roots of the quadratic on the
right is kab, the other root must be the integer kab − c. Therefore replacing
c by kab − c yields a new triple of integers that also satisfy the conditions of
Theorem 1.1 and give the same quotient k as before. To utilize a descent we
are interested in bounding the value of this second root, in order to show that
the new triple is smaller than the original one in some respect.

We immediately deduce that kab − c ≥ 0, since the expression on the left
in (8) will be negative for x ≤ −1 (or possibly undefined when a = b = 1 and
x = −1), and hence not equal to k.

We next show that the smaller root of the quadratic equation on the right
in (8) is less than b. Since b ≤ c this root cannot be c, so it must be kab−c, and
it will follow that kab− c < b. According to the quadratic formula the smaller
root is

1
2

(
kab−

√
k2a2b2 − 4a2 − 4b2 + 4k

)
. (9)

This root is smaller than b precisely when

(ka− 2)b <
√

k2a2b2 − 4a2 − 4b2 + 4k. (10)
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If ka − 2 < 0 then the inequality is clearly true. Otherwise both sides are
nonnegative, so the following statements are equivalent:

kab− 2b <
√

k2a2b2 − 4a2 − 4b2 + 4k,

k2a2b2 − 4ab2k + 4b2 < k2a2b2 − 4a2 − 4b2 + 4k,

a2 − k < b2(ka− 2). (11)

When ka − 2 > 0 the right-hand side of the last line will be at least b2, while
the left-hand side will be less than a2. But a ≤ b, so the inequality holds in this
case as well.

It only remains to consider ka = 2. When a = 1 and k = 2 the last line
reduces to −1 < 0, which is true once again. The other possibility is a = 2
and k = 1, in which case equation (8) reduces to x2 − 2bx + b2 + 3 = 0, or
(x − b)2 = −3. But this equation has no real solutions, and we are assuming
the existence of the solution x = c, so this case never actually arises.

In summary, we have shown that given positive integers a ≤ b ≤ c for which
abc+1 divides a2+b2+c2 with quotient k, then the triple of integers a, b, kab−c
also satisfies this condition, having the same quotient k with 0 ≤ kab − c < b.
As long as kab−c > 0 we obtain a new triple of positive integers whose maximal
element is smaller than before. (Hypothetically if b = c we would need to apply
this step twice to reduce the maximal element, but in reality one can show
that this situation does not occur.) Clearly we cannot repeat this Vieta jump
indefinitely, so eventually we produce a triple A ≤ B ≤ C with kAB − C = 0.
Once we reach this stage we obtain the triple 0, A, B at the next step, having
quotient

02 + A2 + B2

(0)(A)(B) + 1
= k =⇒ k = A2 + B2. (12)

But the value of the quotient k is invariant throughout this process, so we have
shown that k is equal to a sum of two positive squares, as desired. �

It is not hard to see that every sum of two positive squares must occur as
a value of k. For suppose that k = A2 + B2. Running the descent process in
reverse on the triple 0, A, B yields the numbers A, B, A3B + AB3, a trio of
positive integers with quotient A2 + B2, as one can directly verify.

The method of proof even provides a means of organizing all solutions. As
we have seen, if a ≤ b ≤ c are positive integers satisfying the statement of
Theorem 1.1, having quotient k, then the integers a, b, kab− c also work. But
the same argument shows that the triples a, c, kac − b and b, c, kbc − a are
solutions as well. In general the numbers kac − b and kbc − a are distinct and
larger than c. So we are able to run the descent in reverse to find two triples
that could reduce to a, b, c via the process described in the proof, implying
that the set of all solutions having a particular quotient k = A2 + B2 may be
pictured as a binary tree, whose root triple is A, B, A3B + AB3. For instance,
the smallest triple with k = 5 is a = 1, b = 2, c = 10. Above this come the
triples 1, 10, 48 and 2, 10, 99, and so forth.
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Note that when a = b the values of kac− b and kbc− a are not distinct, so
the binary tree does not branch there. This only occurs for a root triple of the
form A, A, 2A4. Also, when k can be written as a sum of two positive squares
in more than one way, as in 65 = 82 + 12 = 72 + 42, then there is more than one
tree corresponding to that value of k.

We also observe that when k = 3 there is a striking similarity between our
equation a2 + b2 + c2 = 3abc + 3 and the Markov equation a2 + b2 + c2 = 3abc,
discussed by Markov in [5]. Our method of solution is based on the one used
to analyze the Markov equation, and the collection of all solutions may be
organized via a binary tree in an analogous manner.

3 A Diophantine Equation

To appreciate the utility of Vieta jumping, we next consider the following corol-
lary to Theorem 1.1.

Corollary 3.1 There are no solutions to the equation

a2 + b2 + c2 = abc + 1. (13)

in positive integers a, b and c.

Proof: A solution would correspond to a triple with quotient k = 1, but 1 is not
equal to the sum of two positive squares. �

However, once we expand our domain to all integers we do find solutions
to (13); namely, a = 0, b = 0, c = ±1 or any permutation of these values. (It
is not hard to see that these are the only integral solutions.) In fact, there are
even positive rational solutions, such as a = 5

2 , b = 19
6 , c = 10

3 . We next provide
an alternate proof to Corollary 3.1, both for sake of comparison and because it
is appealing in its own right.
Proof: Suppose to the contrary that there do exist positive integers satisfy-
ing (13). We will need the fact that two of them have to be multiples of 4.
To this end, a parity check reveals that at exactly one of a, b and c must be
odd, say a. Considering (13) mod 8 leads to b2 + c2 ≡ abc mod 8, and checking
the possibilities b, c ≡ 0, 2 mod 4 shows that the only option is b, c ≡ 0 mod 4.
Therefore we can write c = 4n for some n ≥ 1.

Now rearrange (13) to obtain

(a− 2bn)2 − (4n2 − 1)b2 = −(16n2 − 1). (14)

Defining x = a− 2bn, y = b yields the Pell-like equation

x2 − (2n− 1)(2n + 1)y2 = −(4n− 1)(4n + 1), (15)

which is like the one considered in [4], inspired by the same IMO problem.
We next observe that at least one of the numbers 2n − 1, 2n + 1, 4n − 1

or 4n + 1 is congruent to 2 mod 3; just consider n ≡ 0, 1, 2 mod 3 in turn. To
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begin, suppose that 2n − 1 ≡ 2 mod 3. Then 2n − 1 must have an odd prime
divisor p with p ≡ 2 mod 3. (Here we use the fact that n ≥ 1; this step fails
when n = 0.) Reducing (15) mod p yields

x2 ≡ −(4n− 1)(4n + 1) ≡ −(1)(3) mod p. (16)

But quadratic reciprocity implies that (−3
p ) = −1 for p odd, p ≡ 2 mod 3,

yielding a contradiction. The same reasoning applies when 2n + 1 ≡ 2 mod 3;
in this case (15) reduces to x2 ≡ −(−1)(−3) ≡ −3 mod p and we again reach
a contradiction. It now becomes clear why we needed c = 4n rather than just
taking c to be even: otherwise we would not have been able guarantee that the
prime divisor with p ≡ 2 mod 3 was odd, in which case the claim that (−3

p ) = −1
would no longer be valid.

On the other hand, suppose that 4n− 1 ≡ 2 mod 3. In this case we require
the slightly finer observation that the prime factorization of 4n−1 must include
an odd prime p ≡ 2 mod 3 raised to an odd power. We once again reduce (15)
mod p to obtain

x2 −
(
− 1

2

)(
3
2

)
y2 ≡ 0 mod p =⇒ (2x)2 ≡ −3y2 mod p. (17)

If y 6≡ 0 mod p, then the latter congruence implies that −3 is a square mod p,
contradicting the fact that (−3

p ) = −1, noted above. Therefore y is divisible
by p, hence x is also, and we have a factor of p2 in x2 − (2n − 1)(2n + 1)y2.
Writing x = px′, y = py′ and then dividing through by p2, we may repeat this
argument as long as the quantity is divisible by p. We conclude that the prime
factorization of x2−(2n−1)(2n+1)y2 involves an even power of p, contradicting
the fact that (4n − 1)(4n + 1) contains an odd power of p. Virtually identical
reasoning applies when 4n + 1 ≡ 2 mod 3, so we reach a contradiction in every
situation, which completes the proof. �

4 More Variables

It is natural to wonder whether Theorem 1.1 can be extended to four or more
variables. The answer turns out to be yes, for the most part.

Theorem 4.1 Let a, b, c and d be positive integers such that abcd + 1 divides
a2 + b2 + c2 + d2. Then the quotient

a2 + b2 + c2 + d2

abcd + 1
(18)

is either equal to 1, 2, or is the sum of three positive squares.

Proof: The argument proceeds in a nearly identical fashion to the proof of
Theorem 1.1. Suppose that we have positive integers a ≤ b ≤ c ≤ d for which the
quotient (18) is an integer k. Then replacing d by kabc−d also yields a quadruple
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of integers that give an integral quotient, and one shows that kabc − d ≥ 0 as
before.

The only significant deviation occurs in the process of bounding the value
of kabc− d. This quantity will be less than c if and only if

(kab− 2)c <
√

k2a2b2c2 − 4a2 − 4b2 − 4c2 + 4k. (19)

When kab − 2 is negative the inequality is true, otherwise we can square and
rearrange to obtain

a2 + b2 − k < (kab− 2)c2. (20)

If kab− 2 ≥ 2 then the right-hand side is at least c2 + c2, which will exceed the
left-hand side since a, b ≤ c.

This leaves kab = 2 and kab = 3 to consider, which can only occur if k ≤ 3.
And in fact there are valid quadruples of integers that arise for each such value
of k. For example, a = 1, b = c = d = 3 leads to the quotient k = 1, while
a = b = 1, c = d = 2 gives a quotient k = 2 and a = b = c = 1, d = 3 has k = 3.
Each example leads to an infinite family of solutions with the same k-value by
reversing the descent operation, just as before.

Otherwise, when k ≥ 4, we deduce that kabc−d < c, so this Vieta jump will
decrease the size of the largest element, and we eventually reach a quadruple
A, B, C, D for which kABC −D = 0, so k = A2 + B2 + C2 is a sum of three
positive squares, completing the proof in the same manner as before. �

Of course, the density of positive integers that can be written as a sum of
three positive squares is rather large:

1− 1
8

(
1 +

1
4

+
1
42

+
1
43

+ · · ·
)

=
5
6
, (21)

since Gauss has shown that only numbers of the form 4t(8k + 7) for k, t ∈ Z≥0

fail to have such a representation. So in a sense Theorem 4.1 is not making
nearly as grandiose a claim as Theorem 1.1. Thanks to Lagrange, there is even
less incentive to pursue a statement involving five variables, so we will conclude
our discussion at this point.
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