HOMEWORK SET 4: DEGENERACY Due Monday, January 27, 2025

PROBLEMS FROM TZDII¹

8.5 A mountain can be described by the function h(x, y) which gives the height above sea level of a point that is x east and y north of the origin O,

a) Describe in words the meaning of $\partial h/\partial x$ and $\partial h/\partial y$?

b) What does it mean to a hiker who is walking due north if $\partial h/\partial y$ is positive?

c) What if they are walking due north, but $\partial h/\partial y$ is zero and $\partial h/\partial x$ is positive?

(USE WORDS SUCH AS EAST OR EASTWARD, NORTH OR NORTWARD, UPHILL, DOWNHILL, OR FLAT, ETC.)

8.6 Let h(x, y) describe a mountain as in Problem 8.5. If the same mountain is given by the contour map in Figure 8.25, give estimates for $\partial h/\partial x$ and $\partial h/\partial y$ at points P, Q, and R and the summit, S. The scale for x and y (shown by the ruled line) are given in meters.

8.13 The energy levels of a particle in a cubical box can be found from (8.103)

$$\mathsf{E} = \frac{\hbar^2 \pi^2}{2\mathsf{M}} \left(\frac{\mathsf{n}_x^2}{\mathsf{a}^2} + \frac{\mathsf{n}_y^2}{\mathsf{b}^2} + \frac{\mathsf{n}_z^2}{\mathsf{c}^2} \right)$$

(Problem 8.15) by setting a = b = c. Find the lowest eight energy levels for a particle in a three-dimensional, rigid cubical box. Draw an energy-level diagram for these levels, showing their quantum numbers, energies, and degeneracies. (SEE THE ENERGY-LEVEL DIAGRAM FOR THE SQUARE BOX, FIGURE 8.2. P. 256).

¹ Taylor, Zafiratos, & Dubson, Modern Physics for Scientists and Engineers, 2nd Editon, Pearson, Prentice Hall, 2004