HOMEWORK SET 05: SEPARATION OF VARIABLES Due Monday, February 3, 2025

PROBLEMS FROM AOD 1) Show that

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)\psi=\frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}\left(r\psi\right)$$

PROBLEMS FROM TZDII¹ 8.22) Paraphrased

$$\frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}(r\psi) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)\psi + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\psi = -\frac{2M}{\hbar^{2}}\left[U(r) - E\right]\psi$$
(8.49)

a) Substitute $\psi = \mathbf{R} \Theta \Phi$, then multiply by $\mathbf{r}^2 \sin^2 \theta / \mathbf{R} \Theta \Phi$ recognizing that partial derivatives only act on a specific variable and functions of any other variable are constants.

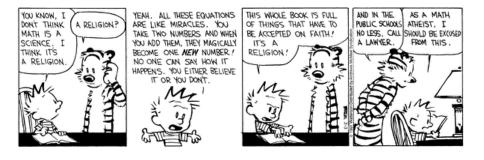
b) Keep the functions of ϕ on the left hand side and functions of r and θ on the right hand side. Explain clearly why each side of this equation must be a constant which we will set as $-m^2$. Note that the partial derivative becomes a standard derivative in a single-variable equation to derive

$$\frac{\mathsf{d}^2}{\mathsf{d}\phi^2}\Phi = -\mathsf{m}^2\Phi \tag{8.51}$$

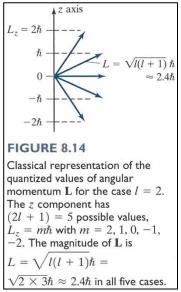
c) From the right hand side above, separate the functions of r & θ . Explain (again) why each side of this equation must be a constant that we will call -k to derive

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(k - \frac{m^2}{\sin^2 \theta} \right) \Theta = 0$$
(8.53)

and


$$\frac{d^{2}}{dr^{2}}(rR) = \frac{2M}{\hbar^{2}} \left[U(r) + \frac{k\hbar^{2}}{2mr^{2}} - E \right] (rR)$$
(8.54)

These are the one-dimensional differential equations resulting from the separation of variables that we can solve individually.


8.25) a) Draw a (correctly scaled ... use graph paper and your ruler) vector model diagram similar to Fig 8.14 for angular momentum of magnitude given by $\ell = 3$.

b) How many possible orientations are there?

c) What is the minimum angle between \vec{L} and the z axis? (Use the ratio of $L_z/|\vec{L}|$ to get an exact angle (use the Trig Cheat Sheet), don't use your calculator!)

¹ Taylor, Zafiratos, & Dubson, Modern Physics for Scientists and Engineers, 2nd Editon, Pearson, Prentice Hall, 2004

