Name:			

1. Briefly and in your own words (not the textbook's) explain what a functional dependency $\alpha \rightarrow \beta$ on a relation **R** means.

Whenever two tuples agree on α they agree on β .

2. If the functional dependency $\alpha\beta \rightarrow \gamma$ is valid for a relation schema **R** can we conclude that the dependency $\beta \rightarrow \gamma$ is also valid? Show why or why not.

No. A simple counterexample is easy to construct. Look at the table in question 4 and let $\alpha = A$, $\beta = B$, and $\gamma = C$

3. Is the following relation in First Normal Form? Briefly explain why or why not.

PNO	Pname	Available colors	City	Weight
1	Nut	Red, blue, green	Paris	5
2	Bolt	Orange	NYC	6

No, Available colors is non-atomic.

4. Consider the relation schema $\mathbf{R} = (\mathbf{A}, \mathbf{B}, \mathbf{C})$ and an instance \mathbf{r} below:

A	В	С	
a1	b1	c1	
a2	b3	c3	
a3	b2	c2	
a3	b1	c4	

a. What non-trivial functional dependencies could currently hold for r?

There are six,
$$C \rightarrow A$$
, $C \rightarrow B$, $C \rightarrow AB$, $AB \rightarrow C$, $AC \rightarrow B$, $BC \rightarrow A$

b. What are the possible candidate keys for \mathbf{r} ?

C

c. What are the possible super-keys for r?

C, AB, BC, AC, ABC

- 5. Consider the following set F of functional dependencies on a relation schemea R=(A,B,C). $F = \{A \rightarrow BC, B \rightarrow C\}$
 - a. Compute the closure F^{\dagger} of F. (Do not include trivial dependencies)

$$F^{+} = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, A \rightarrow C, AC \rightarrow BC, AB \rightarrow BC, AB \rightarrow C, AC \rightarrow B, AB \rightarrow AC\}$$

b. Is F a canonical cover for R? If it is explain why, if it is not, give the canonical cover.

No, $\{A \rightarrow B, B \rightarrow C\}$ is the canonical cover.

- 6. Consider the following set of dependencies F on a relation scheme R = (V, W, X, Y, Z). $F = \{V \rightarrow WX, XY \rightarrow Z, W \rightarrow Y, Z \rightarrow V\}$
 - a. Compute the attribute closure Z^+ of F.

 $Z^+=\{V,W,X,Y,Z\}$

b. Is Z a candidate key? Show why or why not?

Yes, it determines every other attribute.

c. Is there another candidate key? Explain why or why not?

Yes, V is as well. Compute V⁺ to see.

7. Given the dependencies from question 6 is the decomposition (W,X,Z) and (V,Y,Z) lossless? Show why or why not.

Let $R_1 = \{W,X,Z\}$ and $R_2 = \{V,Y,Z\}$ since $R_1 \cap R_2 = \{Z\}$ and Z is a candidate key by 6a then $R_1 \cap R_2 \to R_1$ so the decomposition is lossless. By the way, $R_1 \cap R_2 \to R_2$ also, but only one is required to hold. Note: I did not ask that the decomposition be dependency preserving.

8. Is the functional dependency $WX \rightarrow V$ valid for the set of dependencies in 6? Show why or why not.

Yes, V is in {WX}⁺

9. Give a lossless decomposition of **R** from question 6 into BCNF.

There are lots of correct aswers, but many that are wrong as. In particular make sure you don't put W and Y in the same relation since $W \rightarrow Y$ and W is not a super-key. So $R_1 = (V, X, Y, Z)$ and $R_2 = (W, Z)$ will do.

- 10. Consider a university database that keeps track of current students, courses, and academic departments. A student has a name and an ID. A course has a name, a number, and a department. A department has a name. Students take one or more courses, departments offer one or more courses, and departments have zero or more students as majors. A course can be either a lecture course or a lab course. Functional requirements include needing to know what courses a department offers, what students are enrolled in what courses, current majors in a department, and looking up information about specific students, courses, and departments.
 - a. Draw an E-R diagram that best represents the university database.
 - b. What are the relation schemas for your database?

Everyone got this correct.