US011055257B2

a2 United States Patent
Wadden et al.

US 11,055,257 B2
Jul. 6, 2021

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR DISJOINT (56) References Cited
CHARACTER SET REPORT MERGING U.S. PATENT DOCUMENTS
(71) Applicant: UNIVERSITY OF VIRGINIA 10,580,481 B1* 3/2020 Sadredini GLIC 11/406
PATENT FOUNDATION, 2017/0097852 Al* 4/2017 Glendenning GOG6F 9/4498
Charlottesville, VA (US) 2018/0330014 Al1* 11/2018 Wadden GO6F 15/76
(72) Inventors: John Pierson Wadden, Charlottesville, OTHER PUBLICATIONS
VA (US); Kevin Alan Angstadt, Roy et al., “Algorithmic Techniques for Solving Graph Problems on
Madrid, NY (US) the Automata Processor”, 2016, IEEE International Parallel and
Distributed Processing Symposium, pp. 283-292 (Year: 2016).*
(73) Assignee: University of Virginia Patent Wadden et al., “Automata-to-Routing: An Open-Source Toolchain
Foundation, Charlottesville, VA (US) for Design-Space Exploration of Spatial Automata _Processing Ar_chi-
tectures”, May 2, 2017, 2017 IEEE 25th International Symposium
(*) Not Sub disclai b fthi of Field-Programmable Custom Computing Machines, pp. 180-187
otice: ubject to any disclaimer, the term of this (Year: 2017).*
patent is extended or adjusted under 35 Zhou et al., “Brill Tagging on the Micron Automata Processor”,
U.S.C. 154(b) by 931 days. 2015, TIEEE ICSC 2015, pp. 236-239 (Year: 2015).*
(21) Appl. No.: 15/590,492 " cited by examiner
. No.:
PP ’ Primary Examiner — Paulinho E Smith
o (74) Attorney, Agent, or Firm — Finnegan, Henderson,
(22) Filed: May 9, 2017 Farabow, Garrett & Dunner LLP
(65) Prior Publication Data S) ABSTRACT
The present disclosure relates to systems and methods for
US 2018/0330014 Al Nov. 15, 2018 automatically optimizing a reporting architecture of an
application. In one implementation, a system for automati-
(51) Int. CL cally optimizing a reporting architecture of an application
GO6F 15/80 (2006.01) may include a memory storing instructions and an automata
GO6F 15/78 (2006.01) processor configured to execute the instructions. The
GOGF 15/76 (200 6. o1) instructions may include identifying one or more state
’ transition elements in the application; determining if two or
(52) US. CL more state transition elements have disjoint character sets;
CPC ... GO6F 15/7867 (2013.01); GO6F 15/76 grouping two or more state transition elements having
(2013.01); GOGF 15/80 (2013.01) disjoint character sets into one or more groups; merging state
(58) Field of Classification Search transition elements included in the one or more groups; and

CPC GOG6F 15/76; GO6F 15/7867; GOGF 15/80;
GOGF 8/31; GOGF 9/4498
See application file for complete search history.

400

outputting a merged report configured for disambiguation on
a second processor.

11 Claims, 5 Drawing Sheets

(STES)

IDENTIFY STATE TRANSITION ELEMENTS L 410

DETERMINE IF §TEs HAVE DISJOINT

CHARACTER SETS 420
GROUP STES HAVING DISJOINT .
CHARACTER SETS - 4l

i

¥
MERGE GROLPS OF STEs 410

!

QUTPUT MERGED REPORT

U.S. Patent Jul. 6,2021 Sheet 1 of 5 US 11,055,257 B2

|75
3 (s
o) =
=
e o
= = =
B
[aa]
L]
=i
P~ (2]
fan e
w4 L]

111

US 11,055,257 B2

Sheet 2 of 5

Jul. 6, 2021

U.S. Patent

£1Z

1t¢

G117 =«

—

607

£07

q10¢

pEGE

0

ChEeTS

g0l

e BEQT

US 11,055,257 B2

Si¢

A

Sheet 3 of 5

Jul. 6, 2021

U.S. Patent

360t 4360¢ 2a0t 211k g1ic BTiE

oy
o
o0

S

U.S. Patent Jul. 6,2021 Sheet 4 of 5 US 11,055,257 B2

49

IDENTIFY STATE TRANSITION ELEMENTS | 410
(STESs)

4

DETERMINE IF STEs HAVE DISJOINT
CHARACTER SETS e 420

¥

GROUP STEs HAVING DISIOINT .
CHARACTER SETS 430

¥

MERGE GROUPS OF STEs TN 440

¥

QUTPUT MERGED REPORT e 45D

U.S. Patent Jul. 6,2021 Sheet 5 of 5 US 11,055,257 B2

500

DETERMINE IF 8TEs HAVING DISICINT {510
CHARACTER SETS ARE ACTIVATED

4

RECEIVE TRIGGERING INPUT e D0

¥

DETERMINE WHICH SETMATCHES THE |
TRIGGERING INPUT 530

¥

DISAMBIGUATE L 50

US 11,055,257 B2

1
SYSTEMS AND METHODS FOR DISJOINT
CHARACTER SET REPORT MERGING

This invention was made with government support under
Grant No. HR001-13-3-0002 awarded by the Department of
Defense/Defense Advanced Research Projects Agency
(DARPA). The government has certain rights in the inven-
tion.

TECHNICAL FIELD

This disclosure relates generally to automata processors.
More specifically, and without limitation, this disclosure
relates to systems and methods for automatically optimizing
a reporting architecture of an application for an automata
processor.

BACKGROUND

Automata processing—that is, execution of a task graph
on a string of global input signals—permits computation to
be performed using a set of states and transition rules or
functions. Automata processing offers significant advan-
tages over the widely-used object-oriented programming. In
particular, automata processing is more adapted for paral-
lelism in general and toward solving problems similar to
Markov algorithms in specific.

Furthermore, automata processing offers performance
potential beyond traditional von Neumann architecture. Tra-
ditional von Neumann architecture suffers from a bottleneck
because the instruction storage and data storage share a
common bus. Multithreading and multiprocessing, while
increasing the computing speed of the Central Processing
Unit (CPU), also worsen this bottleneck, which prevents full
performance gains from being realized.

Some automata processors are gaining in commercial
popularity. For example, Micron’s Automata Processor con-
sists of a reconfigurable fabric of automata processing
elements implemented in a dynamic random-access memory
process. Each element is then laid out spatially on the
reconfigurable fabric rather than temporally, as in traditional
von Neumann architecture. Field-programmable gate arrays
(FPGAs) also may be configured to function as an automata
processor.

Nevertheless, automata processors still contain perfor-
mance bottlenecks for certain applications. For example, the
reporting architecture or driver overhead of the automata
processor may degrade optimal performance. Accordingly,
there is a need for optimization techniques that allow more
of the potential performance gain of automata processors to
be realized.

SUMMARY

At present, spatial reconfigurable automata processors
have a reporting architecture that functions as a performance
bottleneck for applications that report frequently. The dis-
closed systems and methods merge disjoint character report-
ing elements in an application, thereby optimizing the per-
formance of the application on the reporting architecture.
Thus, if an application for an automata processor is opti-
mized according to the embodiments of the present disclo-
sure, the application may exhibit increased performance as
compared to the non-optimized application. In addition, one
or more optimized reporting methods implemented by the

10

15

20

25

30

35

40

45

50

55

60

65

2

disclosed systems and methods could be implemented
directly in the application when the application is first
developed.

Certain embodiments of the present disclosure relate to
systems and methods for automatically optimizing a report-
ing architecture of an application for an automata processor.
Advantageously, this optimization may overcome a bottle-
neck unique to spatial reconfigurable automata processors
and may allow for larger efficiency gains over von Neumann
architecture to be realized.

According to an exemplary embodiment of the present
disclosure, a system for automatically optimizing automata
graphs for applications on spatial reconfigurable automata
processors is described. The system may include a memory
storing instructions and an automata processor configured to
execute the instructions. The instructions may include iden-
tifying one or more state transition elements in the applica-
tion. State transition elements (STEs) may compute a match-
ing rule and broadcast the Boolean result to child elements.
The instructions may further include determining if two or
more state transition elements have disjoint character sets.
For example, disjoint character sets may have no elements
in either character set in common. The instructions may
further include grouping two or more state transition ele-
ments having disjoint character sets into one or more groups.
The instructions may further include merging state transition
elements included in one or more groups. For example,
merging state transition elements may include any technique
for considering reporting elements identical, such as wiring
their output to the same port, installing OR gates configured
to merge reports from one or more groups of STEs, installing
child STEs configured to merge reports from one or more
parent STEs, etc. Herein, “OR” gates refer to logic gates that
return true when at least one Boolean input of a plurality of
Boolean inputs is true. Logic gates may be physically
installed within the automata processor (e.g., with additional
circuits) or programmed within the automata processor (e.g.,
by adjusting the reconfigurable fabric). The instructions may
further include outputting a merged report configured for
disambiguation on a second processor.

According to a further exemplary embodiment of the
present disclosure, a method for automatically optimizing
automata graphs for applications on a spatial reconfigurable
automata processor is described. The method may include
identifying one or more state transition elements in the
application. State transition elements (STEs) may compute
a matching rule and broadcast the Boolean result to child
elements. The method may further include determining if
two or more STEs have disjoint character sets. For example,
disjoint character sets may have no elements in their respec-
tive character sets in common. The method may further
include grouping two or more STEs having disjoint charac-
ter sets into one or more groups. The method may further
include merging STEs included in one or more groups. For
example, merging STEs may include any technique for
considering reporting elements identical, such as wiring
their output to the same port, installing OR gates configured
to merge reports from one or more groups of STEs, installing
child STEs configured to merge reports from one or more
parent STEs, etc. The method may further include outputting
a merged report configured for disambiguation on a second
processor.

According to a further exemplary embodiment of the
present disclosure, a method for automatically reporting
disjoint character sets in an application is described. The
method may include determining if a group of STEs in the
application having disjoint character sets has been activated

US 11,055,257 B2

3

by a triggering input. STEs may compute a matching rule
and broadcast the Boolean result to child elements. When
the Boolean result is true (i.e., 1), the STE may be described
as activated, and any child elements of the STE may also be
described as enabled. STEs with disjoint character sets may
compute matching rules based on character sets with no
element in common. The method may further include receiv-
ing the triggering input. The method may further include
determining which set of the disjoint character sets matches
the triggering input. For example, the triggering input may
indicate which STE in the group of STEs was activated. The
method may further include disambiguating the report based
on the set matching the triggering input.

Additional objects and advantages of the present disclo-
sure will be set forth in part in the following detailed
description, and in part will be obvious from the description,
or may be learned by practice of the present disclosure. The
objects and advantages of the present disclosure will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the appended claims.

It is to be understood that the foregoing general descrip-
tion and the following detailed description are exemplary
and explanatory only, and are not restrictive of the disclosed
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which comprise a part of
this specification, illustrate several embodiments and,
together with the description, serve to explain the disclosed
principles. In the drawings:

FIG. 1 (prior art) is a depiction of an exemplary class
hierarchy of functions for an automata processor.

FIG. 2 (prior art) is a depiction of an exemplary logic cell
for use in an automata processor built using field-program-
mable gate arrays (FPGAs).

FIG. 3 (prior art) is a depiction of an exemplary reporting
architecture for an automata processor.

FIG. 4 is a flowchart of an exemplary method for auto-
matically optimizing a reporting architecture of an applica-
tion for an automata processor.

FIG. 5 is a flowchart of an exemplary method for auto-
matically reporting disjoint character sets in an application
for an automata processor.

DETAILED DESCRIPTION

The disclosed embodiments relate to systems and meth-
ods for automatically optimizing a reporting architecture of
an application for an automata processor. Embodiments of
the present disclosure may be implemented in a commercial
automata processor, e.g., FPGAs or Micron’s Automata
Processor, or may be implemented in a comparable proces-
sor capable of executing non-deterministic finite automata
(NFA).

Advantageously, embodiments of the present disclosure
may allow for increasing the reporting efficiency of an
application designed for running on an automata processor.
Additionally, embodiments of the present disclosure may
allow for greater realization of the potential efficiency gains
of automata processors over typical von Neumann architec-
ture.

According to an aspect of the present disclosure, an
automata processor may receive an application. The appli-
cation may be written in a general computing language, for
example, Verilog or VHDL. The application may further use
a processor-specific software development kit (SDK). In

20

25

40

45

55

4

other embodiments, the automata processor may include the
application as a circuit within the processor. In such embodi-
ments, the automata processor may include an application-
specific integrated circuit (ASIC) or other integrated
circuit(s) (IC(s)) programmable with one or more hardware
description languages (HDLs), such as Verilog or VHDL.

In some embodiments, the application may represent one
or more non-deterministic finite automata (NFA). An NFA
may, for example, be represented formally by a 5-tuple (Q,
2, A, qo, F). The 5-tuple may consist of:

a finite set of states Q

a finite set of input symbols X

a transition function A: QxZ—P(Q)

an initial (or start) state q, €Q

a set of states F distinguished as accepting (or final) states
FCQ.

In certain aspects, the one or more NFA may include one
or more deterministic finite automata (DFA). A DFA may,
for example, be represented formally by 5-tuple, (Q, Z, 9§, qo,
F). The 5-tuple may consist of:

a finite set of states Q

a finite set of input symbols (sometimes called the alphabet)
2

a transition function &: Qx2—Q

an initial (or start) state q,EQ

a set of accept (or final) states FCQ.

DFA are a subset of NFA in that the non-deterministic
transition functions of NFA may be converted into one or
more deterministic transition functions of DFA using pow-
erset construction. Because powerset construction requires
determining the reachable subset of all states within an
n-state NFA, a DFA produced by powerset construction may
have, at most, 2” states. Therefore, the performance of a
DFA may be exponentially worse than a corresponding
NFA. Advantageously, automata processors may be adapted
to execute NFA without converting to DFA and therefore
may realize potentially exponential performance gains over
DFA processors (e.g., traditional von Neumann architec-
ture).

In some embodiments, the automata processor may
include and/or have an operable connection with at least one
memory. For example, the at least one memory may include
dynamic random-access memory. The memory may store
the application to be executed on the automata processor.
Furthermore, the memory may store additional methods,
including the optimization methods disclosed below.

In some embodiments, the automata processor may
include and/or have an operable connection with at least one
PCI Express (PCle) bus. Advantageously, a PCle bus may
allow the automata processor to have an operable connection
with a general-purpose computer, e.g., a conventional server.

According to an aspect of the present disclosure, the
automata processor may identify one or more state transition
elements (STEs) in the application. An STE may store a
character set that may represent all possible input symbols
the STE matches against. In addition, an STE may examine
a global input symbol and define a Boolean activation
function as whether or not the global input symbol is
contained in the character set. Generally, an STE may be
described as “activated” when its match rule is satisfied.
Herein, the term “match rule” may refer to a Boolean match
operation like perfect match operator (e.g., two strings
perfectly match when both strings have equivalent charac-
ters in equivalent locations) or an inclusive match operator
(e.g., two strings match if one is a subset of the other). In
addition, the term “match rule” may refer to the Boolean
output of whether a similarity threshold is met; for example,

US 11,055,257 B2

5

the similarity between two strings may be quantified using
one or more known algorithms like Damerau-Levenshtein
distance or Jaccard index. For example, an STE may be
configured to report on activation and thereby produce a
1-bit output.

According to an aspect of the present disclosure, the
automata processor determines if two or more of the iden-
tified STEs have disjoint character sets. For example, two
characters sets may be disjoint when the sets have no
common members—e.g., the character set “EQ1095” and
the character set “TP3682” are disjoint while the character
set “FP901” and the character set “GP239” are not disjoint
on account of ‘P’ and ‘9’ being common to both sets.

According to an aspect of the present disclosure, the
automata processor may group two or more of the STEs
determined to have disjoint character sets into one or more
groups. For example, the automata processor may determine
that a first STE, a second STE, and a third STE have disjoint
character sets and group them into group A and may further
determine that a fourth STE and a fifth STE have disjoint
character sets and group them into group B. By way of
further example, a first STE may have character set
“EQ1095” and a second STE may have character set
“TP3682” and the automata processor may place these two
STEs in a first group; similarly, a third STE may have
character set “FP901” and a fourth STE may have character
set “GE234” and the automata processor may place these
two STEs in a second group. The automata processor will
not create a group containing the first STE with either the
third STE or the fourth STE since they are not disjoint, and
the automata processor will not create a group containing the
second STE with either the third STE or the fourth STE
since they are also not disjoint.

According to an aspect of the present disclosure, the
automata processor may merge STEs included in the one or
more groups. In some embodiments, merging may include
any method to consider the reporting signals of all STEs in
the group identical, such as installing OR gates configured
to merge reports from the STEs included in the one or more
groups. For example, in a group containing a first STE with
a first character set and a second STE with a second
character set, the OR gate will combine the Boolean outputs
of the first STE and the second STE to generate a joint
report. By way of further example, if a global input con-
tained “GE234” and if a group contained a first STE having
character set “Q1095” and a second STE having character
set “GE234” then the OR gate may combine the output of 0
(false) from the first STE with the output of 1 (true) from the
second STE to generate a merged output of 1 (true).

In other embodiments, merging may include adding one
or more STEs. In such embodiments, the one or more STEs
may be children of the one or more groups and may be
configured to merge reports from the one or more parents.
Preferably, the one or more child STEs are further config-
ured to report every cycle and to disambiguate the report
generated by the one or more parents. For example, in a
group containing a first STE with a first character set and a
second STE with a second character set, the child STE will
activate if either the first STE or the second STE is activated
and will consider the global input against both the first
character set and the second character set. By way of further
example, if a global input contained “GE234” and if a group
contained a first STE having character set “Q1095” and a
second STE having character set “GE234” then the group
would activate and the child STE would compare the global
input (“GE234”) against the first character set (“Q1095”)

20

40

45

55

6

and the second character set (“GE234”) in order to disam-
biguate which parent STE in the group caused the child STE
to activate.

According to an aspect of the present disclosure, the
automata processor may output a merged report configured
for disambiguation on a second processor. For example, the
report may include the merged Boolean output and the
global input such that the second processor may determine
which STE in the group caused the activation. In some
embodiments, the second processor may comprise a tradi-
tional von Neumann architecture.

By way of further example, if a global input contained
“GE234” and if a group contained a first STE having
character set “Q1095” and a second STE having character
set “GE234” then the OR gate would output 1 (true) and the
second processor would compare the global input
(“GE234”) against the first character set (“Q1095”) and the
second character set (“GE234”) in order to disambiguate
which parent STE in the group caused the OR gate to output
1 (true).

According to another embodiment of the present disclo-
sure, an application designed for execution by an automata
processor may include a method for automatically reporting
disjoint character sets. In some aspects, the method may
include determining if a group of state transition elements
(STEs) in the application having disjoint character sets has
been activated by a triggering input. STEs may compute the
result of applying a matching rule to a global input and
broadcast the Boolean result to child elements. An STE may
be described as activated when the Boolean result is true
(i.e., 1), and any child elements of the STE may also be
described as enabled. STEs with disjoint character sets
compute matching rules based on character sets that have no
element in common.

According to an aspect of the present disclosure, the
method may further include receiving a triggering input. The
triggering input may be the global input because an STE
generally compares the global input against the character set
of the STE.

According to an aspect of the present disclosure, the
method may further include determining which set of the
disjoint character sets matches the triggering input. For
example, the triggering input may be the global input and
may indicate which STE in the group of STEs was activated.
By way of further example, if the global input contained
“GE234” and if the group contained a first STE having
character set “Q1095” and a second STE having character
set “GE234” then the group would activate and the global
input (“GE234”) would be compared to the first character set
(“Q1095”) and the second character set (“GE234”) in order
to determine which character set matches the triggering
input.

According to an aspect of the present disclosure, the
method may further include disambiguating the report based
on the set matching the triggering input. For example, if the
triggering input contained “GE234” and was compared to a
first character set “Q1095” and a second character set
“GE234,” then a report generated by a group having a first
STE with character set “Q1095” and a second STE with
character set “GE234” could be disambiguated.

Reference will now be made in detail to exemplary
embodiments and aspects of the present disclosure,
examples of which are illustrated in the accompanying
drawings.

FIG. 1 is a depiction of an exemplary class hierarchy 100
of functions for an automata processor. Hierarchy 100 is

US 11,055,257 B2

7
well-known in the art. As depicted in FIG. 1, hierarchy 100
may be a hierarchy of elements 101.

As further depicted in FIG. 1, elements 101 may comprise
special elements 103 and state transition elements (STEs)
105. STEs 105 may compute the result of applying a
matching rule to a global input and broadcast the Boolean
result to child elements. Special elements 103 may include
all elements that compute results based on activation sym-
bols rather than the global input.

As further depicted in FIG. 1, special elements 103 may
comprise gates 107 and counters 109. Counters 109 may
store a number and increment said number whenever one or
more parent elements are activated. Counters 109 may
further activate when said number reaches a threshold. Gates
107 may include logic gates such as NOT (shown as 115),
AND (shown as 111), OR (shown as 113), XOR (not
shown), NAND (not shown), NOR (not shown), or XNOR
(not shown). Gates 107 may further include compound logic
gates (not shown), such as AND-OR-Invert (AOI) or OR-
AND-Invert (OAI).

FIG. 2 is a depiction of an exemplary logic cell 200 for
use in an automata processor built using field-programmable
gate arrays (FPGAs). Logic cell 200 is well-known in the art
and may comprise a logic block in combination. (An array
of logic blocks may comprise an FPGA.)

As depicted in FIG. 2, logic cell 200 may include two
3-input lookup tables (LUTs)—for example, 3-input LUTs
201a and 2015. Inputs 203qa, 2035, and 203¢ may each be
input into LUT 201a and LUT 2015. Input 2034 may be
input into multiplexer 205. The outputs of LUT 201a and
LUT 2015 may also be input in multiplexer 205.

As further depicted in FIG. 2, logic cell 200 may also
include full adder 207. Full adder 207 may receive the
outputs of LUT 201a and LUT 2015 as input and may also
accept carry-in C,, and carry-out C_,,. The output of full
adder 207 and the output of multiplexer 205 may be input
into multiplexer 209.

As further depicted in FIG. 2, the output of multiplexer
209 may be input into D-type flip-flop 211. Clock signal
CLK may synchronize flip-flop 211. The output of multi-
plexer 209 and the output of flip-flop 211 may be input into
multiplexer 213. Output 215 may comprise the output of
multiplexer 213.

One skilled in the art may modify logic cell 200 and/or
bundle one or more logic cells together to form a logic block.
Moreover, one skilled in the art may form an array from a
plurality of logic blocks. An FPGA may comprise a plurality
of'logic blocks, but one skilled in the art may add additional
components such as one or more transceivers, one or more
processor cores, one or more Ethernet MACs, one or more
PCI/PCI Express controllers, or one or more external
memory controllers.

FIG. 3 is a depiction of an exemplary reporting architec-
ture 300 for an automata processor. Architecture 300 is
well-known in the art. For example, architecture 300 may be
included in commercial automata processors such as
Micron’s Automata Processor.

As depicted in FIG. 3, architecture 300 may include two
half-cores—for example, half-cores 301 and 303. Half-cores
301 and 303 may each include three reporting regions—for
example, half-core 301 includes reporting regions 305a,
3055, and 305¢, and half-core 303 includes reporting regions
307a, 307b, and 307¢. Each reporting region may include
one or more elements of an application. For example, in
Micron’s Automata Processor, each reporting region may

10

25

35

40

45

8

include up to 1,024 different elements each outputting a
single-bit report and may record the single-bit reports into a
single-cycle report vector.

As further depicted in FIG. 3, each reporting region may
have a corresponding first-level storage buffer—for
example, region 3054 has buffer 309a, region 3056 has
buffer 3095, region 305¢ has buffer 309¢, region 3074 has
buffer 311a, region 3075 has buffer 3115, and region 307¢
has buffer 311c. For example, in Micron’s Automata Pro-
cessor, each first-level storage buffer may store up to 1,024
reporting vectors.

As further depicted in FIG. 3, the first-level storage
buffers may export to one or more second-level storage
buffers—for example, first-level buffers 309a, 30954, 309¢,
311a, 3115, and 311c¢ export to second-level buffers 313a
and 313b. Preferably, buffers 313a and 3135 may form a
double-buffered structure—for example, if second-level
buffer 313a is exporting, first-level buffers 309a, 3095,
309¢, 311a, 3115, and 311lc may continue to export to
second-level buffer 3135.

As depicted in FIG. 3, second-level buffers 313a and 3136
may export to external memory interface 315. For example,
interface 315 may comprise a DDR3 memory interface. One
skilled in the art may modify architecture 300 to include
additional buffers, additional memory interfaces, etc.

FIG. 4 is a flowchart of an exemplary method 400 for
automatically optimizing a reporting architecture of an
application for an automata processor. Method 400 may be
implemented using an automata processor. Alternatively, a
general purpose or special-purpose computer using von
Neumann architecture may be used to implement method
400.

At step 410, the automata processor may identify one or
more state transition elements (STEs) in the application. For
example, each STE may store a character set that represents
all possible input symbols the STE matches against and may
define a Boolean activation function as whether or not a
global input symbol is contained in the character set.

At step 420, the automata processor may determine if two
or more of the identified STEs have disjoint character sets.
For example, two character sets may be disjoint when the
sets have no common members—e.g., the character set
“FT90” and the character set “GH1234” are disjoint while
the character set “FT90” and the character set “GH9876” are
not disjoint on account of ‘9” being common to both sets.

At step 430, the automata processor may group two or
more of the STEs determined to have disjoint character sets
into one or more groups. For example, if the automata
processor identifies a first STE having character set “FT90”;
a second STE having character set “GH1234”; a third STE
having character set “ZP5678”; and a fourth STE having
character set “K(G9876” then the automata processor may
determine that the first, second, and third STE have disjoint
character sets and group these three STEs together. In the
same example, the automata processor may determine that
the fourth STE is not disjoint with the first STE, the second
STE, or the third STE and thus may not include the fourth
STE in the group.

At step 440, the automata processor may merge the STEs
included in the one or more groups. In some embodiments,
merging may include wiring the outputs of each STE to the
same output report port, or explicitly installing OR gates
configured to merge reports from the STEs included in the
one or more groups. For example, if a global input contained
“GH1234” and if a group contained a first STE having
character set “FT90” and a second STE having character set
“GH1234” then the OR gate may combine the output of 0

US 11,055,257 B2

9

(false) from the first STE with the output of 1 (true) from the
second STE to generate a merged output of 1 (true).

In other embodiments, merging may include adding one
or more STEs. For example, the one or more STEs may be
children of the one or more groups and may be configured
to merge reports from the one or more parents.

At step 450, the automata processor may output a merged
report configured for disambiguation on a second processor.
For example, the report may include the merged Boolean
output and the global input such that the second processor
may determine which STE in the group caused the activa-
tion. In some embodiments, the second processor may
comprise a traditional von Neumann architecture.

For example, if a global input contained “GH1234” and if
a group contained a first STE having character set “FT90”
and a second STE having character set “GH1234” then the
OR gate would output 1 (true) and the second processor
would compare the global input (“GH1234”) against the first
character set (“FT90”) and the second character set
(“GH1234”) in order to disambiguate which parent STE in
the group caused the OR gate to output 1 (true).

FIG. 5 is a flowchart of an exemplary method 500 for
automatically disambiguating a merged report from an
application on an automata processor. Method 500 may be
implemented using a traditional von Neumann processor.

10

15

20

10

“ZW305” and if the group contained a first STE having
character set “XY697” and a second STE having character
set “ZW305,” then the group would activate and the global
input (“ZW305”) would be compared to the first character
set (“XY697”) and the second character set (“ZW305”) in
order to determine which character set matches the trigger-
ing input.

At step 540, the processor may disambiguate the report
based on the set matching the triggering input. For example,
if the triggering input contained “ZW305” and was com-
pared to a first character set “XY697” and a second character
set “ZW305,” then a report generated by a group having a
first STE with character set “XY697” and a second STE with
character set “ZW305” could be disambiguated.

EXAMPLE

Multiple simulations were developed and run in order to
demonstrate potential efficiency gains by using the disclosed
methods for automatically optimizing a reporting architec-
ture of an application. The simulation used the disclosed
methods as described in the example pseudocode below:

input :set E of element objects representing an NFA
input ;set R C E of reporting STE element objects
input function Parents returns input connections to given element
input function Children returns output connections from given element
input function Matches returns char set of matching input stimuli for an STE element
output :An NFA with reports merged (set of element objects)
1 foreach element r € R do
2 if |Children(r)l > 0 then
3 continue
4 end
5 element sink (STE matching all input);
6 Parents(sink) < {r};
7 E < E U {sink};
8 R« R\ {r};
9 char set match < Matches(r);
10 foreach element ' € R do
11 if |Children(r')| > O then
12 continue
13 end
14 if match N Matches(r') == 0 then
15 Parents(sink) <= Parents(sink) U {r'};
16 R<R\{r}
17 end
18 end
19 R = R U {sink};
20 end
21 return E
50

At step 510, the processor may determine if a group of
state transition elements (STEs) in the application having
disjoint character sets has been activated. For example, the
group of STEs may be activated by a triggering input (also
termed the “global input”). The group of STEs may be
described as activated because the combined Boolean result
of the included matching rules is true (i.e., 1). Two character
sets may be disjoint when the sets have no common mem-
bers—e.g., the character set “ZW305” and the character set
“XY697” are disjoint while the character set “ZW305” and
the character set “XY509” are not disjoint on account of ‘5’
and ‘0’ being common to both sets.

At step 520, the processor may receive the triggering
input. At step 530, the automata processor may determine
which set of the disjoint character sets matches the trigger-
ing input. For example, if the global input contained

55

60

65

All simulations were performed using the Virtual
Automata Simulator (VASim). VASim is an open source
application for simulating execution of applications on
automata processors.

The optimization methods disclosed herein were tested on
applications contained within the ANMLZoo automata pro-
cessing benchmark suite. The reference Wadden et al.,
“ANMLzoo: a benchmark suite for exploring bottlenecks in
automata processing engines and architectures,” 2016 IEEE
International Symposium on Workload Characterization, is
incorporated herein by reference for its disclosure of the
ANMLZoo suite.

The optimization methods disclosed herein resulted in
projected efficiency gains as high as 27.17%; however, the
projected efficiency was application-specific. Table 1 shows
the results of this example for benchmark applications in the

US 11,055,257 B2

11

ANMLZoo0 suite. Table 3 includes the original number of
reporting elements in an application, the compressed num-
ber of reporting elements in the application after applying
the optimization methods disclosed herein, the factor rep-
resenting the percentage by which the number of reporting
elements was reduced, and the speedup representing the
percentage in performance gain as predicted by FASim.

TABLE 1
Benchmark Original Compressed Factor Speedup
Snort 2,585 2,393 46.1% 23.51%
Dotstar 2,837 365 87.1% 0%
ClamAV/ 515 92 82.1% 0%
PowerEN 2,857 566 80.1% 7.35%
Brill 1,962 1,962 0% N/A
Protomata 2,340 2,340 0% N/A
Hamming 186 93 50% 0%
Levenshtein 96 28 70.8% 0%
ER 1000 1000 0% N/A
SPM 5,025 5,025 0% N/A
Fermi 2,399 71 97% 27.17%
RF 3,767 3,767 0% N/A

The foregoing description has been presented for pur-
poses of illustration. It is not exhaustive and is not limited
to precise forms or embodiments disclosed. Modifications
and adaptations of the embodiments will be apparent from
consideration of the specification and practice of the dis-
closed embodiments.

Moreover, while illustrative embodiments have been
described herein, the scope includes any and all embodi-
ments having equivalent elements, modifications, omis-
sions, combinations (e.g., of aspects across various embodi-
ments), adaptations and/or alterations based on the present
disclosure. The elements in the claims are to be interpreted
broadly based on the language employed in the claims and
not limited to examples described in the present specifica-
tion or during the prosecution of the application, which
examples are to be construed as nonexclusive. Further, the
steps of the disclosed methods can be modified in any
manner, including reordering steps and/or inserting or delet-
ing steps.

Instructions or operational steps stored by a computer-
readable medium may be in the form of computer programs,
program modules, or codes. As described herein, computer
programs, program modules, and code based on the written
description of this specification, such as those used by the
processor, are readily within the purview of a software
developer. The computer programs, program modules, or
code can be created using a variety of programming tech-
niques. For example, they can be designed in or by means of
Verilog Hardware Description Language, VHSIC Hardware
Description Language, or any such programming languages.
One or more of such programs, modules, or code can be
integrated into a device system or existing communications
software. The programs, modules, or code can also be
implemented or replicated as firmware or circuit logic.

The features and advantages of the disclosure are apparent
from the detailed specification, and thus, it is intended that
the appended claims cover all systems and methods falling
within the true spirit and scope of the disclosure. As used
herein, the indefinite articles “a” and “an” mean “one or
more.” Similarly, the use of a plural term does not neces-
sarily denote a plurality unless it is unambiguous in the
given context. Words such as “and” or “or” mean “and/or”
unless specifically directed otherwise. Further, since numer-
ous modifications and variations will readily occur from

10

15

20

25

30

40

45

50

12

studying the present disclosure, it is not desired to limit the
disclosure to the exact construction and operation illustrated
and described, and accordingly, all suitable modifications
and equivalents may be resorted to, falling within the scope
of the disclosure.

Other embodiments will be apparent from consideration
of the specification and practice of the embodiments dis-
closed herein. It is intended that the specification and
examples be considered as example only, with a true scope
and spirit of the disclosed embodiments being indicated by
the following claims.

What is claimed is:

1. A system for automatically optimizing automata graphs
for applications on spatial reconfigurable automata proces-
sors, comprising:

a memory storing instructions; and

an automata processor configured to execute the instruc-

tions to:

identify one or more state transition elements in the
application;

determine if two or more state transition elements have
disjoint character sets;

group two or more state transition elements having
disjoint character sets into one or more groups;

activate one or more state transition elements in
response to a Damerau-Levenshtein distance of a
global input and the one or more state transition
element being less than a threshold;

merge activation states of the state transition elements
included in the one or more groups; and

output a merged report configured for disambiguation
on a second processor.

2. The system of claim 1, wherein the instructions to
merge state transition elements comprise installing OR gates
configured to combine two or more reports from state
transition elements included in the one or more groups.

3. The system of claim 1, wherein the instructions to
merge state transition elements comprise adding one or more
child elements to the one or more groups configured to
combine two or more reports from state transition elements
included in the one or more groups.

4. The system of claim 1, wherein the instructions to
merge state transition elements comprise wiring the outputs
of at least one group of the one or more groups to a single
report port of the automata processor.

5. The system of claim 1, wherein the automata processor
comprises one or more field-programmable gate arrays.

6. The system of claim 1, wherein the automata processor
comprises a Micron Automata Processor.

7. A method for automatically optimizing automata
graphs for applications on a spatial reconfigurable automata
processor, comprising:

identifying one or more state transition elements in the

application;

determining if two or more state transition elements have

disjoint character sets;
grouping two or more state transition elements having
disjoint character sets into one or more groups;

activating one or more state transition elements in
response to a Jaccard index of a global input and the
one or more state transition element exceeding a thresh-
old;

merging activation states of the state transition elements

included in one or more groups; and

outputting a merged report configured for disambiguation

on a second processor.

US 11,055,257 B2

13

8. The method of claim 7, wherein merging state transi-
tion elements comprises installing OR gates configured to
combine two or more reports from state transition elements
included in the one or more groups.

9. The method of claim 7, wherein merging state transi-
tion elements comprises adding one or more child elements
to the one or more groups configured to combine two or
more reports from state transition elements included in the
one or more groups.

10. The system of claim 1, wherein merging state transi-
tion elements comprises wiring the outputs of at least one
group of the one or more groups to a single report port of the
automata processor.

11. A method for automatically disambiguating a merged
report from an application on automata processor, compris-
ing:

determining if a group of state transition elements in the

application having disjoint character sets has been
activated by a triggering input based on a comparison
between a threshold and a Damerau-Levenshtein dis-
tance of a global input and at least one state transition
element of the group;

receiving the triggering input;

determining which set of the disjoint character sets

matches the triggering input; and

disambiguating the report based on the set matching the

triggering input.

#* #* #* #* #*

10

15

20

25

14

