
Sensor Data Transplantation for Redundant
Hardware Switchover in Micro Autonomous

Vehicles
Cailani Lemieux-Mack

Vanderbilt University
kailani.j.lemieux.mack@vanderbilt.edu

Kevin Leach
Vanderbilt University

kevin.leach@vanderbilt.edu

Kevin Angstadt
St. Lawrence University

kangstadt@stlawu.edu

Abstract—As our reliance on micro autonomous vehicles in-
creases, security vulnerabilities and software defects threaten
the successful completion of tasks and missions. Recent work
has developed end-to-end toolchains that provide trusted and
resilient operation in the face of defects and attacks. These
toolchains enable automatically repairing (and patching) the
control software in the event of a failure. Existing techniques
force the subject control software to terminate and the vehicle to
be motionless, making the restart or post-repair deployment more
complex and slow. The challenge remains to ensure that vehicle
control software can recover from attacks and defects quickly
and safely, even while the target vehicle remains in motion.

This paper presents a technique for faster, simpler, and
seamless hardware switchover that operates while the vehicle
is in motion. The key contribution is the ability to restart the
control software post-repair while the vehicle is in motion by
transplanting sensor data between onboard control computers to
bypass a costly portion of initialization. Although existing check-
point and restore methods allow software to recover execution
at a known-functional state, they are not lightweight enough to
support recovery during mission execution. Instead, our approach
transplants known-good sensor data from a trusted, isolated
execution environment in the onboard computing hardware. Our
evaluation successfully reproduces prior simulation results in
hardware. Further, sensor transplantation allows for successful
initialization while in motion, reduces time-to-ready by 40%, and
is robust to variances in sensor readings.

Index Terms—resilience, autonomous vehicles, redundant
hardware

I. INTRODUCTION

In recent years, uncrewed micro autonomous vehicles, such
as quad-rotor drones and small rovers, have been used for a
variety of tasks, including mapping and rescue missions [35],
defensive military applications [23], agriculture [22], and
sea-ice management [28]. It is critical that the software on
these uncrewed vehicles operates correctly to minimize human
injury and damage to the vehicle and surrounding environment.

Both security vulnerabilities and software defects have
been documented in drone control software [1], [42], [47].
An attacker can remotely compromise control software run-
ning on the device, endangering the drone and its mission,
and more generally, software faults can lead to dangerous
malfunctions. Mitigation techniques often use hardware and

This work was supported in part by the National Science Foundation (grant
CCF-2211751) and by DARPA.

software redundancy to provide assurance that the system
can withstand a mission-threatening problem with the primary
computer. Redundant software has been used in other domains,
such as N-version systems, to detect and prevent security
vulnerabilities in software [8]. Similarly, duplicate hardware
has been used to mitigate the effects of software and hardware
failure in satellites [33] and commercial aviation [12].

Techniques like binary hardening [13], [36], runtime mon-
itoring [50], and automated program repair [24], [25] have
all been used to improve the resiliency and fault tolerance
of control software. Previous work has combined these three
techniques to deploy resilient and fault-tolerant automated re-
siliency frameworks for vehicle control systems [26]. However,
a key weakness of prior work is that the system and control
software must be stopped mid-mission to address a software
fault. Critically, there are no guarantees that the location
where the vehicle must stop is both suitable for a restart
and safe to remain for the length of time required to find,
build, and deploy a software patch. Moreover, prior automated
resiliency frameworks have been developed and evaluated only
in simulation and have not yet been applied in practice. A
practical application of such automated resiliency frameworks
must operate on a real platform and support resilient operation
while the vehicle is in motion. Further, the approach should be
dependable and robust in that it can detect and recover from
anomalous behavior such as attacks or faults.

When a mission controller starts, it must initialize its
sensors as well as other parts of the software state before
it is capable of autonomous control.1 Current software imple-
mentations assume that the vehicle is stationary on the ground
for this initialization. This assumption is undesirable because
(1) it may not be possible for the vehicle to stop in certain
terrain, and (2) upon encountering a defect or anomaly, the
vehicle may need to stop in—or navigate through—a com-
promised environment. We lift this assumption by allowing
software initialization while the vehicle is in motion under
the control of a secondary computer. Our key insight is that
the secondary computer is fully initialized and running; thus,
we can transplant any necessary initialization data from the

1We use the term controller as an all-encompassing term, representing the
combination of both the control algorithms and also the hardware and software
necessary to interface with motors and sensors.

This article has been accepted for publication in 2024 ACM/IEEE Proceedings of the 15th International Conference on Cyber-Physical
Systems. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information:

DOI 10.1109/ICCPS61052.2024.00019

secondary computer to the primary computer. This data can
be used to start the controller in motion to retake control from
a live state without requiring re-initialization from scratch in
a stationary position.

In this paper, we present a real hardware system that
leverages an automated resiliency framework to allow an
autonomous vehicle to maintain autonomous operation while
software faults are detected and repaired. Our design includes
a primary controller that executes missions and a simplified
secondary controller that can take control in the event of an
anomaly or attack. We also present the first approach that
allows the primary computer to restart while the uncrewed
vehicle is in motion under the control of a secondary computer.
Current software requires the vehicle to reinitialize sensors and
internal controller state, a costly operation that threatens phys-
ical vehicle safety because the vehicle must remain stationary.

We evaluate our data transplantation algorithm using con-
trolled experiments on our dual-controller platform. First, we
measure the success rate and time needed for the control
software to initialize when the vehicle is both stationary and in
motion. Then, we measure the sensor data accuracy needed for
successful controller initialization. Finally, we replicate exper-
imental scenarios from [26] to test the robustness of our dual-
controller design and its ability to support switchover when
software faults are detected. Our experiments show that sensor
data transplantation allows for the previously unsupported in-
motion initialization and reduces static initialization time an
average of 40–45%. Our replication study demonstrates that
our dual-controller design can successfully respond to—and
switch control for—a suite of thirteen different indicative
autonomous vehicle defect scenarios.

To summarize, the main contributions of this paper are:
• A low-cost, small, redundant, dual-controller autonomous

vehicle platform for resilient mission operation in the face
of software defects and vulnerabilities.

• A sensor data transplantation algorithm that allows con-
trol software to initialize while a vehicle is in motion.

• An empirical analysis of our platform demonstrating a
40% improvement in initialization time and successful
hardware switchover across a suite of autonomous vehicle
defect scenarios.

Ultimately, this work improves the state-of-the-art by ex-
panding the conditions under which autonomous vehicles can
respond to threats and software defects.

II. BACKGROUND

In this section we provide relevant background information.
We provide additional information in Appendices A and B.

A. State Estimation Filters

Autonomous vehicle controllers make actuation decisions
based on sensor measurements of the physical world. For cor-
rect operation, autonomous vehicles must maintain an accurate
model of position, orientation, and other metrics, which we
collectively refer to as the vehicle’s state. However, sensor data
is known to be noisy [45] which causes error in the internal

state of the vehicle and can interfere with safe and trusted
operation. Thus, it is common to use a state estimation filter
to increase the accuracy of the known state.

A state estimation filter is a statistical digital-signal-
processing filter that fuses sensor measurements with previous
time-step estimations. This estimation is done using a physical
model and the previous accepted state. The result of this fusion
of measurements and estimate then becomes the new accepted
state for the next cycle of the control loop. This process allows
for calculation of an accurate state without completely trusting
any one sensor measurement.

Our platform uses an Extended Kalman Filter (EKF) [11]
for state estimation. To transplant the state from the secondary
controller to the primary controller, we interface directly with
the EKF state representation. We leverage the state calculated
by a second, previously-initialized, EKF filter to “jump start”
the position estimation in our primary EKF filter. Thus, our
approach does not require the full initialization of the primary
filter (which would require a stationary vehicle) and can restart
control software on a moving vehicle.

B. Simplex Architecture

Previous work has examined the use of dual-controller
architectures to provide high assurance in various systems,
including autonomous vehicles [15], [26], [44]. The Simplex
architecture is one such seminal effort that combines a simple,
feature-reduced controller with a complex, full-featured con-
troller to achieve high assurance. A full-featured autonomous
vehicle control stack is too complex to employ in-depth static
analyses (e.g., symbolic execution [37]) or certain dynamic
analyses (e.g., high-coverage fuzzing [6]), making rapid detec-
tion of vulnerabilities or aberrant behavior difficult. A feature-
reduced, simplified instance of the controller software with
a smaller trusted code base can provide stronger guarantees
about the correct system operation. As a result, more coarse-
grained checks can be applied to the complex controller and,
if an issue is detected, control can change to the simple
controller, allowing the platform to operate through attacks or
defects. This architecture has been adapted across a number of
domains, including embedded real-time operating systems [5],
cyber-physical systems [46], and multi-agent systems [34].
However, the Simplex architecture is primarily focused on
verification and validation in high-assurance settings—it al-
lows changing control to a verified, simple controller, but does
not provide any facility for restoring control to the complex
controller during mission operation. In this paper, we augment
a Simplex-architecture-based framework by providing support
for restoring control to the complex controller once a patch
or repair is found, thus allowing continued operation of the
vehicle’s mission with high assurance.

C. Software Techniques for Automated Resilience and Trust

Previous work has developed an end-to-end automated
resiliency framework for automatically detecting, repairing,
and recovering from exploits and faults in autonomous ve-
hicles [15], [26]. Known as Software Techniques for Auto-

mated Resilience and Trust, or START, it combines together
static and dynamic program analyses, instrumentation, and
automated program repair. We provide a detailed summary
of the START framework in Appendix B.

In this work, we extend the START framework to implement
the Simplex architecture to support deployment on a small au-
tonomous vehicle. We develop a dual-controller-based vehicle
that divides pieces of the START framework between a com-
plex, primary controller, and a simple, secondary controller.
We also develop the algorithms necessary to restart the primary
controller while the vehicle is navigating using the secondary
controller. Our proposed approach also reduces how long post-
repair deployment takes. While we use START in this work,
our approach could be used to with any automated resilience
framework such as PGPatch [21] to seamlessly integrate a
repair into vehicle control software.

III. SENSOR DATA TRANSPLANTATION

In this section, we present our algorithm for transplanting
sensor data from a primary controller to a secondary controller.
This algorithm is needed to successfully initialize the control
software while the vehicle is in motion, improving autonomous
vehicle resiliency by reducing downtime and precluding the
need to stop or land the vehicle during a restart. While we
present our approach in the context of redundant control
software executing on two computers, this same approach may
also be used for software run on the same hardware.

First, we enumerate our assumptions and provide a formal
problem description. Then, we apply domain knowledge to
determine the appropriate data to transplant between two con-
trollers. Finally, we describe our algorithm for transplanting
this data.

A. Hardware and Software Assumptions

First, we assume that the vehicle contains two distinct
pieces of computational hardware: the primary and secondary
computers. We also assume that each of these computers
has access to an identical set of sensors. While the sensors
are identical, we make no explicit assumptions about the
sensors themselves, either the sensors that are available or the
consistency of their readings across computers. For increased
isolation and experimental expediency, we assume that these
sensors are not shared, but any sensors whose values are
simply polled (i.e., read-only) could be shared between the two
computers2. We therefore assume that the trusted, secondary
computer is always capable of taking control of the vehicle.

We assume that the primary state representation is a subset
of the secondary state representation. In our implementation,
we achieve this by using identical EKFs. This is to ensure
that the secondary state is capable of completely restoring the
primary state. For transplantation simplicity, we also assume
that the memory layout used to store EKF state and covariance
on both controllers is identical. This assumption can be relaxed
by implementing a transformation system for mapping the

2For sensors that require both polling and updates (i.e., read-write access),
we could apply a mutual exclusion mechanism to allow for shared access.

fields of the state representation from one system to another.
Other aspects of the software, such as navigation modes, may
be different. We discuss techniques that can be employed to
harden the secondary controller software in Section VIII.

We also assume that there is sufficient computational power
for the repair task to be executed on the vehicle. Alternatively,
the vehicle will need to have the ability to communicate with
a server where the repair task may be offloaded.

Critically, we cannot assume that it is safe for the vehicle to
stop at an arbitrary location along the path of the mission. Lo-
cations may be unsafe to stop due to physical characteristics,
such as unsafe terrain, or bureaucratic considerations, such
as rights of way or jurisdictions. As such, successful mission
operation is dependent on the ability to remain in motion even
if the control software has a fault or is attacked.

B. Problem Statement

Given these assumptions and constraints, we formulate the
following problem statement:

In the event of a detected fault or attack, control must seam-
lessly switch from the primary controller to the secondary
controller while the vehicle is in motion. After a suitable
repair is found and applied, the primary controller must
successfully restart and reinitialize while the vehicle is in
motion and under the control of the secondary controller. Fi-
nally, the primary controller must seamlessly regain control
of the vehicle and continue with navigation.

Next, we describe techniques for restarting and initializing
the control software. Section IV describes the hardware we
used to provide support for seamless control transfer.

C. Transplanting Sensor Data

We leverage the redundant hardware in our design to start
and initialize the control software while the vehicle is in
motion. While we cannot assume that the primary controller’s
state is uncompromised during an attack, the secondary con-
troller does have a viable, fully initialized copy of the vehicles
state. Moreover, since the secondary controller has a reduced
trusted code base, we can transplant its more trusted view of
the state to the primary controller once a patch is generated.

Our analysis of the source code revealed that the software
supports autonomous navigation as soon as the assumed error
in the state falls below certain thresholds.3 These thresholds
ensure that various components of the state are consistent with
each other and this requirement takes up a large portion of
the static initialization time. On the secondary controller, the
assumed error is already below these thresholds so we are able
to immediately satisfy this condition.

Because the complete initialization of the state estimation
filter is the key component allowing for autonomous control,

3The relevant source code in the ArduPilot codebase
can be found here: https://github.com/ArduPilot/ardupilot/blob/
e58d2ecf2f5705b375928be61bc734766690968b/libraries/AP NavEKF3/
AP NavEKF3 Control.cpp#L618

https://github.com/ArduPilot/ardupilot/blob/e58d2ecf2f5705b375928be61bc734766690968b/libraries/AP_NavEKF3/AP_NavEKF3_Control.cpp#L618
https://github.com/ArduPilot/ardupilot/blob/e58d2ecf2f5705b375928be61bc734766690968b/libraries/AP_NavEKF3/AP_NavEKF3_Control.cpp#L618
https://github.com/ArduPilot/ardupilot/blob/e58d2ecf2f5705b375928be61bc734766690968b/libraries/AP_NavEKF3/AP_NavEKF3_Control.cpp#L618

Perform Repair

Primary Computer Secondary Computer

Run Control Software Run Backup Control
Software

Problem

Switch Control

Stop Software

Transplant Data
Start Software
w/ transplanted data

Switch Control

(Loiter)

Continue with Mission

Patch/Recompile Software

Fig. 1. Timeline of transplant algorithm. Control software runs on the primary
computer until a problem is detected. Control is switched to the secondary
computer while a repair is performed. Post-repair, EKF data is transplanted
from the secondary computer to the primary computer and the control software
is restarted. Finally, control is transferred back to the primary computer, and
the mission continues.

we focus our efforts here. This means that we allow other
components of the software to initialize as they normally do.
Many of these components interact directly with the hardware
sensors and perform the necessary handshakes to begin receiv-
ing data. When the software restarts, these handshakes are still
necessary. On our platform, we only identified one hardware
sensor initialization that requires a stationary vehicle—the
inertial measurement unit (IMU). Our solution is to initialize
the IMU at the base station (where it must be safe to remain
stationary) and store the necessary initialization values. Upon
moving initialization, we can load in these values instead
of calculating them. This functionality is tied to a system
parameter that is initially false, and can simply be set to true
in the patched version.

Thus, by transplanting the secondary state, we are able
to break the assumption that the vehicle is stationary during
initialization.

D. Extending an Automated Resiliency Framework to Support
Redundant Hardware and Seamless Switchover

Given the previous observations, we extend an automated
resiliency framework to support a Simplex architecture using
dual controllers. Previously, these resiliency frameworks have
only been demonstrated and evaluated in simulation using real
autonomous-vehicle software. To the best of our knowledge,
this is the first implementation of the framework in hardware.
Further, we add seamless restart and switchover to the repaired
primary computer. Figure 1 shows a high-level timeline of
software components, the use of the primary and secondary
controllers, and transplantation of sensor data.

Before a mission begins, the control software is started
on both the primary and secondary computer. The complex,
primary computer is responsible for controlling the vehicle

during a mission, while the simple, secondary computer is used
as a backup if the resiliency framework detects a problem. If a
problem is detected, our system automatically switches control
to the secondary computer, which will begin to loiter (drive
in a holding pattern) or drive to known safe location.

Meanwhile, the automated-repair component of the frame-
work will begin to search for a patch to address the fault or
attack. We claim no novelty in this stage. However, rather than
remaining stationary while the repair takes place, our dual-
controller platform is capable of continuing operation while
repairing the control-software binary.

After a patch is identified and the control software is
recompiled on the primary computer, it is now time to transfer
control back. The secondary computer transfers a snapshot
of the state of the vehicle’s navigation and position, to the
primary computer. Without loss of generality, this state may be
represented as matrices of numeric data. The control software
on the primary computer is launched, and it reads this trans-
planted data during initialization. The secondary computer
then waits for a ready signal from the primary computer.
When this is received, control is switched from the secondary
computer back to the primary computer.

With the addition of this secondary computer and data
transplantation, the vehicle can navigate at all times, even
when an attack or fault has been detected.

IV. IMPLEMENTATION

In this section, we describe how we apply our approach to
a real autonomous vehicle platform, building upon prior work
that uses simulation. We develop a low-cost dual-controller
Simplex rover platform to support resilient operation in small
autonomous vehicles. The vehicle is built from commercial,
off the shelf parts using existing control software. Our pro-
posed design relies on the assumptions and model of mission
execution described in Section III.

First, we describe the dual-controller architecture and then
describe the hardware necessary to choose the active controller.

A. Dual-Controller Architecture

We extend the START framework [26] to support con-
tinued operation while the control software is repaired and
restarted. We propose a redundant hardware, Simplex-style
architecture with a primary and secondary computer and the
ability to switch seamlessly between both. As described in
Section VIII, redundant hardware and computation are well
studied in this domain. Our contribution here is a small au-
tonomous vehicle platform, built using low-cost commercial-
off-the-shelf (COTS) and open-source hardware, for both
deployment and study of resiliency frameworks. While a
single computer would be sufficient, we prefer the physical
separation afforded by redundant hardware for the primary
and secondary controllers. A multi-computer platform allows
for more flexibility with experimentation and research: both
single and dual-computer architectures may be explored using
our rover platform. Further details are provided in Appendix C.

Telemetry
Radios

Controller
Switch

GPS Antenna

Secondary
Controller

Primary
Controller

Raspberry Pi
+

Emlid Navio2

Primary
(Complex)
Controller

● Execute mission

Secondary
(Simple)

Controller
● Monitor Mission
● Initiate Repair
● Loiter while

primary inactive

LAN

Controller
Switch

Motor Signals
to Vehicle

Sensor Data Sensor Data

Telemetry
with ground

station

Telemetry
with ground

station

(a) (b) (c)

Fig. 2. (a) Block diagram of dual-controller platform. The primary controller is responsible for mission operation (navigation, motor control, etc.) while the
secondary controller monitors the system and handle automated repairs. In the event of an anomaly, the controller switch will transfer control to the secondary
controller, which is capable of loitering or navigating to a safe location. (b) Overhead view of dual-controller platform. The primary and secondary computers
have independent sets of sensors. (c) A custom multiplexer is used to select the computer sending control signals to the motors.

Figure 2(a) provides a block diagram of our proposed
architecture. We partition the operation of the vehicle (the
primary controller) onto a separate, secondary, device from the
controller executing the resiliency framework. This secondary
computer also executes a simple controller that is capable
of loitering, moving in a holding pattern, or navigating to
a known safe location. This simplified controller is mini-
mized for both a smaller attack surface and and a smaller
trusted code base. Both controllers have independent sensors
providing input environmental data, and both controllers can
communicate with a remote operator through bidirectional
telemetry radios. The controllers also have a communication
link to allow monitoring of mission operation and deployment
patches and repairs to the primary controller. A separate con-
troller switch, seen in Figure 2(c), managed by the secondary
controller connects the output motor signals from one of the
two controllers to the vehicle.

Our platform is built on a 1/12 to 1/16 scale remote control
truck chassis. Figure 2(b) provides an overhead view of the
computational hardware, sensors, and vehicle platform. This
design can support a variety of autopilot computers and con-
trollers. We note that resilient cyber-physical systems are often
evaluated only in simulation [26] [52] [21]. Implementing a
system on hardware is difficult time consuming. We show that
our system is viable on hardware, and provide a platform on
which other resiliency systems can be implemented to provide
a benchmark for comparison.

B. Multiplexing Motor Control Signals

Key to our platform design is the ability to programmatically
switch between the motor control signals being generated by
the primary and secondary computers. On a micro vehicle,
these signals are typically communicated to motor controllers
using pulse-width modulation (PWM) [2]. Motor speeds are
specified with a varying width of a electrical pulse over a fixed
time window, with typical pulse widths ranging from 1ms (no
throttle) to 2ms (full throttle). With a dual-controller platform,
there are two sets of PWM signals being generated—one from
each computer—and hardware is needed to select and route
these signals to the motor controllers and servos.

We use an Ateml ATTiny85 microcontroller to switch the
multiplexer. Our custom firmware exposes a device on an I2C
bus, which is a common serial protocol supported by most
COTS autopilot hardware. Using an I2C bus, the multiplexer is
connected to the secondary computer. The secondary computer
therefore has the ability to switch the control of the motors
through this microcontroller.

A schematic of the multiplexer circuit is provided in Fig-
ure 2(c). The multiplexer is on the left, and the microcontroller
is on the right. Input, output, and bidirectional signals are
labeled. The SCL and SDA signals form the I2C bus (represent-
ing clock and data, respectively). Circuitry for the pin headers
is elided for space. Our firmware for the microcontroller is
available as open-source software and the full circuit designs
and circuit-board layout are released as open hardware.

V. EXPERIMENTAL METHODOLOGY

Next, we describe the hardware and software configuration
used for our experiments. We also outline the benchmarks
used to evaluate the transfer of control between primary and
secondary computers.

A. Control Software

The autonomous vehicle control software used in our
evaluation is ArduPilot [2]. This control software has been
deployed to over one million devices and supports a wide
range of vehicle types [3]. For this evaluation, we focus
specifically on APMRover2, a subset of ArduPilot designed for
autonomous ground vehicles. We added our code to transplant
EKF state to APMRover2 version 4.1.0 (commit e58d2ec).
ArduPilot is controlled using the Micro Autonomous Vehicle
Link (MAVLink), a packet-based protocol designed for small
vehicles.4 Therefore, we implement our control messages to
trigger transplants on top of this protocol.

B. Hardware and System Configuration

Our hardware platform uses two Raspberry Pi 3B+ comput-
ers, each with an Emlid Navio2 autopilot HAT. We run a wired
network between the two Pis for transfer of EKF data. The two

4MAVLink Protocol: https://mavlink.io/en/

https://mavlink.io/en/

computers are connected to a ground station with both WiFi
and also MAVLink telemetry. WiFi was used to manage the
experiments and data collection, but actual mission commands
are sent exclusively using the MAVLink telemetry radios.

Both computers are running a custom Raspberry Pi OS
(debian-based) image created by Emlid with a Linux kernel
version of 4.14.95-emlid-v7+. This is a customized kernel that
contains the necessary drivers to interface with the sensors on
the Navio2 autopilot HAT.

See Appendix C for more information about parts and our
design choices for the hardware platform.

C. Attack and Fault Scenarios

To test that our dual-controller vehicle is capable of switch-
ing between controllers when an attack or fault is detected,
we replicate the results presented by Leach et al [26]. Their
approach was originally tested in simulation on 14 scenarios
including attacks and realistic defects designed by an external
red team [26]. The red team developed an indicative set of
vulnerabilities that would likely be encountered in the wild
for autonomous vehicle systems. This previous work, however,
only tested these scenarios in a simulation framework. We take
these vulnerabilities as written from the START framework,
and we integrated them with our dual-controller rover to
evaluate the efficiency with which our approach can detect
vulnerabilities, switch control, patch indicative defects, and
return control to the patched, primary controller.

The first two columns of Table II provide a high-level
description of each scenario. Scenario 8 is an x86 (Intel)
attack, which we exclude because it is not applicable to our
Arm-based platform.

The scenarios developed in Leach et al. consist of (1)
ArduPilot source code with the seeded defect, (2) a waypoint
mission to execute with the provided software, and (3) a
script to trigger the seeded vulnerability through a MAVLink
message. The original experiment scenarios were developed
for the ArduCopter subcomponent of ArduPilot. We therefore
reconstructed the scenarios described by Leach et al. and
adapted them to work on the APMRover2 subcomponent. A
majority of these scenarios were implemented on the under-
lying hardware abstraction layer and were therefore common
to both control components. We also ported these scenarios to
the hardware abstraction layer for the Navio2 HAT as there
is dedicated code for both simulation and physical hardware.
For all scenarios, we ported the defects and vulnerabilities as
faithfully as we could. We also updated the missions to use
waypoints in our geographic location, but made an effort to
maintain the orientation and overall structure of the mission.

VI. EVALUATION

In this section we present an empirical evaluation of our
sensor data transplantation algorithm and the dual-controller
platform.

We address the following research questions:
RQ 1. Does transplanting sensor data reduce the initialization

time for a stationary vehicle?

5 outliers

 47 < i < 96

17 outliers

 42 < i < 47

15

20

25

30

35

40

No Transplant Full Transplant State Only
Type of Transplant

T
im

e
(s

ec
)

Fig. 3. Time to initialize ArduPilot on a stationary vehicle across 100
trials with no transplant, with full transplant, and only transplanting the
state vector. With no transplanting, initialization takes an average of 39.081
seconds. With full transplantation, initialization takes an average of 21.482
seconds. Transplanting only the state vector from the EKF takes an average
initialization of 23.376 seconds.

RQ 2. Is the control software able to initialize a moving
vehicle?

RQ 3. Does transplanting a subset of EKF data improve
initialization times for a moving vehicle?

RQ 4. Is the transplant algorithm robust to perceived error in
the transplanted state?

RQ 5. Is the dual-controller platform able to continue opera-
tion with a control switchover?

RQs 2 and 5 specifically test the functionality of our plat-
form. Without our approach, the current START framework
must stop the control software, leaving the vehicle stationary
and stranded for some time. The current version of ArduPilot
is not able to initialize while the vehicle is in motion, which
is required by our dual-controller platform. RQs 1, 3, and 4
measure ancillary aspects of our system, such as improvements
to run time. Note, however, that we consider the system a
success if (1) it provides continuous vehicle operation, even
while START is constructing repairs on the control software
and (2) the control software is able to be restarted while the
vehicle is being controlled and in motion.

A. Initialization on a Stationary Vehicle (RQ 1)

First, we test that transplanting EKF data still allows the
vehicle to initialize while stationary. We wish to validate
that our data transplantation does not significantly impede
basic operation of the control software. Thus, we measure the
time needed to initialize ArduPilot with and without the EKF
transplant algorithm. We define initialization time as the time
needed for the software to be ready to drive autonomously.
Specifically, the software is initialized if it would allow the
user to switch it into autonomous mode. The two key data
structures in the EKF are the state vector and the covariance
matrix. We therefore focus our transplantation algorithm on
these two collections of data. We conducted several exper-
iments that tested the effectiveness of transplanting various
subsets of this data between the computers. A full transplant
copies both the state vector and the covariance matrix, while
our second configuration only copies the state vector. Each
configuration was timed across 100 trials.

TABLE I
AVERAGE AND MEDIAN TIME NEEDED TO INITIALIZE ON A MOVING

VEHICLE

Average Median
Experiment Init. Time (s) Init. Time (s) Success

No Transplant† – – –
Full Transplant 47.196 29.524 9/10*
State Only 42.899 24.736 10/10
† Without our modifications, ArduPilot cannot initialize in motion

* One trial failed to initialize for an unrelated hardware fault

Figure 3 presents the results of these trials. The control soft-
ware successfully initialized in all trials for which EKF data
was transplanted. The violin chart provides a visualization of
the density of results of varying duration. Most recorded values
are clustered around the mean for each trial. An unmodified
version of ArduPilot takes an average of 39.081 seconds to
initialize. With Full Transplantation and State Vector Only,
initialization of a stationary rover takes 21.482 and 23.376
seconds, respectively. Lower times are better, indicating that
ArduPilot was ready to perform autonomous missions more
quickly. This reduced time for the vehicle to be ready for
autonomous control is an added benefit of our dual-controller
platform. Micro autonomous vehicles have limited battery life
(20-30 minutes [7]), and thus any reduction in initialization
time post-repair will extend the length of a mission.

While most initialization times hover right around the
mean, there are a number of outliers when the EKF data is
transplanted. When these occur, we observed that the EKF had
entered a reset mode, often because of a glitch in the sensor
data. In several instances, this resulted in an initialization
time slightly longer that the unmodified version of ArduPilot;
however, we note that without sensor data transplantation, it
will not be possible to initialize ArduPilot in motion.

Transplanting EKF data still allows a stationary vehicle
to initialize. An added benefit of our approach is a 40-
45% reduction in the initialization time of ArduPilot on a
stationary vehicle.

B. Initialization on a Moving Vehicle (RQ 2 & 3)

Next, we test whether state transplantation supports con-
troller initialization while the vehicle is in motion. Recall from
Section III that we assume that the software cannot initialize
while the vehicle is in motion, and this is true for ArduPilot.
As noted in Section I, it is critical that the vehicle remain in
motion at all times to reduce the risk of physical attack.

Additionally, we measure the time needed to initialize
ArduPilot on a moving vehicle. To collect this data, we drove
the vehicle in a circle using the secondary computer while
timing the initialization of the primary computer. We tested
transplanting both the full state data structure as well as
only the state vector. Because the vehicle is in motion for
these experiments, the testing procedure had to be monitored.
Therefore, we limited our testing to 10 trials each. We present

Initialize and
transplant data1m

6m

4m

2m

Legend

No rotation test

90o rotation test

Fig. 4. Experiment setup to test acceptable error in transplanted EKF data.
The vehicle was initialized before exporting data. To simulate the vehicle
travelling some distance before the transplanted data is injected, the vehicle
was then moved 1, 2, 4, and 6 meters away from the initialization point
and restarted with the transplanted data. We recorded the time needed for
the control software to be ready for autonomous operation. We also tested
rotating the vehicle at 1 and 6 meters to demonstrate resilience to orientation.

the results in Table I. Critically, state transplantation allows for
a successful ArduPilot initialization in all of our experiments.
In one case for the full transplant, the hardware failed for an
unrelated reason resulting in a total of nine successful trials.
While in-motion restarts are slower than stationary restarts (cf.
Figure 3, in-motion restart was not possible on this platform
prior to our technique. Therefore, we have demonstrated
that sensor data transplantation is a successful approach for
initializing ArduPilot while the vehicle is in motion.

We also study the effects of transplanting a subset of data
rather than the full EKF state. In comparing a full transplant
with transplanting only the state vector portion of the EKF,
we observe an inversion of results from those presented in
Figure 3 for a stationary vehicle. There is a 16% difference
in the median initialization time for these two configurations.
We attribute this to covariance—the other data structure in
the EKF—being more a property of the individual hardware.
Thus it seems faster to recalculate it from scratch rather than
starting from the covariance on different hardware.

Similar to the stationary experiments, we observed EKF
resets that resulted in longer initialization times. These lasted
longer when the vehicle was in motion but eventually cleared.
This suggests an opportunity for improving the initialization
times of a vehicle in motion.

Transplanting EKF data allows ArduPilot to initialize suc-
cessfully while the vehicle is in motion. Transplanting only
the state vector improves the median initialization time by
approximately 16%.

C. Error in Transplanted Data (RQ 4)

Because the vehicle is in motion while the EKF data is being
transplanted, there is a small difference or error in the state
by the time ArduPilot begins to initialize. We measure how
tolerant initialization is to discrepancies in the transplanted

20

30

40

50

60

1m 0º 2m 0º 4m 0º 6m 0º 1m 90º 6m 90º
Distance and Orientation

T
im

e
(s

ec
)

Fig. 5. Average runtime to initialize ArduPilot when stationary vehicle
is placed at varying distances and orientations from where EKF data was
collected. Each location was measured 100 times. There is no evidence that
initialization times are a function of the distance or orientation from the origin
point where EKF data was transplanted.

data. Figure 4 provides an overview of our experiments. We
first initialized ArduPilot and exported the EKF data to use for
transplantation. Then, we moved the vehicle to set distances
from this initial location. To increase the challenge of initial-
ization, we move the vehicle at a diagonal to the direction the
vehicle was oriented. Keeping the vehicle oriented in the same
direction, we measured initialization time with the transplanted
data at one, two, four, and six meter intervals from the original
location. Six meters exceeds the distance a vehicle can travel
in the time it takes to transfer EKF data between controllers,
but we provide these larger distances as stress tests for our
approach. We also tested with the vehicle rotated by 90 degrees
at both one and six meters.

Results from these experiments are presented in Figure 5.
For each position of the vehicle, we conducted 100 trials
to record the initialization time. The violin charts allow us
to observe that initialization times continue to be clustered
around the mean for all configurations. In each case, the
average initialization time is approximately 20 seconds with
no discernible differences in recorded times. This suggests that
the initialization procedures of ArduPilot are fairly robust and
are capable of initializing with EKF data within a distance
of at least six meters. For small vehicles, this provides a
sufficient radius to allow for the copying of data between the
two computers while the vehicle is in motion.

The distance traveled by the vehicle while EKF data is
being transplanted has no discernible impact on ArduPilot’s
ability to initialize. Initialization time are consistent across
all measured distances and orientations.

D. Control Switchover (RQ 5)

To test our dual-controller hardware, we replicate the ex-
perimental setup and evaluation scenarios used in the START
framework [26]. We focus on our platform’s ability to transfer
control from the primary computer to the secondary computer
when START detects an anomaly, and critically, to transfer
control back to the primary controller after a repair has been
constructed. Other stages of the START framework (such as
the ability to repair a fault) have been previously evaluated

TABLE II
SUCCESSFUL HARDWARE SWITCHOVER ON AUTONOMOUS VEHICLE

FAULT SCENARIOS

Successful
Scenario Description Switch

1 Use after free ✓
2 Format string: Information Leak ✓
3 Format string: Crash ✓
4 Stack-based buffer overflow: GCS ✓
5 Heap-based buffer overflow: GCS ✓
6 Stack-based buffer overflow: MAVLink ✓
7 Heap-based buffer overflow: MAVLink ✓

8 x86 code injection† N/A
9 Infinite loop ✓

10 Segmentation fault ✓
11 Mathematical logic bug ✓
12 Denial of Service (DoS) ✓
13 Integer error ✓
14 Floating point exception ✓

† This scenario is specific to Intel assembly and cannot be replicated on our
hardware, which is based on 64-bit ARM.

for the same scenarios, and these results would not change
substantially between simulation- and real-world deployments.

We programmed the secondary controller to send an I2C
message to the onboard multiplexer to switch control when
an anomaly was detected. On the secondary computer, we
programmed ArduPilot to drive the rover to a specified co-
ordinate, allowing us to test for a seamless transfer of control.
We define a seamless transfer as one where there is no pause
or noticeable change in the vehicle’s speed or trajectory.

Table II shows results of these experiments. The final
column indicates whether the switch of control was seamless.
In all scenarios, our approach successfully and seamlessly
transferred control from one computer to the other. For each
experiment, the control transfer took less than 10 ms.

Our hardware multiplexer correctly switches control be-
tween primary and secondary controllers for all 13 scenarios
that apply to Arm-based computers. When combined with
the results for EKF transplant, our dual-controller architec-
ture improves autonomous vehicle resiliency and repair.

VII. DISCUSSION

In this section, we discuss the implications of this work as
well as threats to validity of our approach.

Our evaluation demonstrates that automated resiliency
frameworks can apply to physical vehicle platforms and that
transfers of control can be made seamlessly between hardware
and software control stacks. This approach assumes that a
dual-controller architecture is employed. We use this setup be-
cause it facilitates isolation of execution between the primary
and secondary control boards. In practice, this means that,
although the rich, full-featured primary control software may
become compromised by an attacker, the simplified, reduced
feature secondary controller is less likely to be compromised
because of its reduced-trusted code base and attack surface.

A. Generalizability of Results

In this paper, we focus on an extension of the START
framework for autonomous vehicle resiliency. However, while
our prototype currently only support this framework, the key
algorithmic technique concerning the seamless transfer of
sensor state is not limited to a specific automated resiliency
framework. In practice, our work could be combined with
other software assurance techniques to enable more efficient
recovery of autonomous vehicles from defects or faults. Gen-
eralizing our findings to other platforms would require an
assessment of the representation of sensor state and an ability
to capture and transplant that state in a new target platform.

VIII. RELATED WORK

Checkpoint and Restore methods are a means for intro-
ducing fault tolerance into a system [41]. In this approach,
a copy of vital data is stored at specific points during the
mission (or, more generally, during execution of any soft-
ware). Checkpointing can be embedded directly into the code
base. This method was used by Selective Checkpoint/Restore
(SCR), an algorithm that combines a type-guided search with
developer annotations to embed Checkpoint/Restore support
into autonomous vehicle control software [18]. We present a
complementary approach that leverages domain knowledge of
the controller software and architecture to transplant a small
portion of state from a simple controller to the complex con-
troller, allowing reinitialization while the vehicle is in motion.
Our approach could be combined with a Checkpoint/Restore
system to add an additional layer of redundancy.

Hardware and Software Redundancy are well-established
strategies for enhancing software and hardware resilience [9],
[32], with applications spanning spacecraft [14], satellites [33],
web systems [31], and embedded systems [16]. Hot spares/hot
standbys [17], where an actively initialized secondary con-
troller takes over in the event of a primary controller fail-
ure, offer both full duplication and simpler safety controller
options. Software-based redundancy can be achieved through
N-version systems [51], which run multiple independently
developed program versions and utilize a voting system to
combine their results. We capitalize on hardware redundancy,
employing dual controller computers to enable a vehicle to
maintain autonomous operation via secondary hardware while
repairing software defects and vulnerabilities in the primary
hardware. While our approach primarily focuses on hardware
redundancy, it is conceivable to implement an N-version
system on top of our proposed platform.

Sensor Attacks are a class of attack that seeks to subvert or
disrupt the ability of the vehicle to measure the world around
it. Examples of this include electromagnetic interference in-
jection attacks [19] and acoustic injection attacks [20]. These
attacks are capable of interference with sensor measurements,
such as those taken by onboard inertial measurement units or
IMUs. In this scenario, the IMUs of all onboard computers
would be simultaneously compromised. Although our system
is largely vulnerable to these attack models, there have been

shown to be effective counter measures to some classes of
sensor attacks [19] [20] [30]. Our technique focuses primarily
on protecting the software rather than the hardware. However,
in practice, our proposed architecture would benefit from the
hardening techniques to mitigate the sensor attacks.
Trusted Execution Environments (TEEs), such as Arm
Trust-Zone [4], offer the possibility of implementing the
secondary controller functions, providing robust isolation guar-
antees with a single physical controller. A shared platform
could also use virtualization, employing separate guest vir-
tual machines or containers for each control stack while
allowing the hypervisor to manage I/O pathways to sensors
and actuators. However, these approaches come with security
concerns, as attackers could compromise the hypervisor or
escape the virtualized environment [27], [39], [40], posing
a threat to the secondary controller VM. Furthermore, both
TEEs and virtualization have drawbacks. They require careful
consideration of sensor design, as sharing sensors between
primary and secondary control software may expose vul-
nerabilities like sensor-based attacks. Addressing this issue
might involve enabling switchover hardware to switch between
physical sensors. Given that autonomous vehicles are real-time
systems, any assurance techniques must not introduce exces-
sive overhead that violates real-time constraints. Introducing a
secondary controller VM or context switching within the TEE
environment could potentially introduce too much runtime
overhead, jeopardizing the safe operation of the vehicle.

IX. CONCLUSIONS

Uncrewed, autonomous vehicles are being integrated into
numerous industries. While there are many benefits, latent
software defects and vulnerabilities in the controller source
code pose a real threat to the success of these platforms.
Recent efforts, such as the START framework, seek to increase
the resiliency of autonomous vehicles through binary harden-
ing, runtime monitoring, and automated program repair, but
do not support continuous mission operation while defects are
being repaired, and have not yet been applied to real physical
vehicle platforms. In this work, we develop a full hardware im-
plementation of the previously theoretical START framework.
We present a Simplex-style architecture using redundant, dual
computers on a small vehicle platform to extend the START
framework to support continuous, in-motion operation and
recovery. To allow the primary controller to be restarted while
the vehicle is under the control of the secondary controller,
we present a technique for transplanting sensor data between
software controllers. This allows the control software to skip
over initialization steps that require the vehicle to be stationary,
thereby increasing efficiency and physical safety of the vehicle
during recovery. We perform an empirical evaluation of our
dual-controller architecture and data transplantation algorithm,
demonstrating that our design supports continuous operation
and restart while the vehicle is in motion. Our approach has
the added benefit of reducing controller initialization time
by an average of 40% compared to the original, stationary
initialization times.

REFERENCES

[1] O. Alhawi, M. Mustafa, and L. Cordeiro, “Finding security vulnerabil-
ities in unmanned aerial vehicles using software verification,” in IEEE
International Workshop on Secure Internet of Things (SIoT), Aug. 2019.

[2] ArduPilot Development Team, “ArduPilot,” https://ardupilot.org, 2023.
[3] ——, “ArduPilot Source Code,” https://github.com/ArduPilot, 2023.
[4] ARM, “TRUSTZONE FOR CORTEX-A,” https://www.arm.com/

technologies/trustzone-for-cortex-a, 2022.
[5] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and

L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in RTAS, 2009, pp. 99–107.

[6] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in ACM CCS, 2017, pp. 2329–2344.

[7] C. H. Choi, H. J. Jang, S. G. Lim, H. C. Lim, S. H. Cho, and I. Gaponov,
“Automatic wireless drone charging station creating essential environ-
ment for continuous drone operation,” in ICCAIS, 2016, pp. 132–136.

[8] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless frame-
work for security through diversity,” in USENIX - Volume 15, 2006.

[9] S. Dutt, F. Rota, F. Trovo, and F. Hanchek, “Fault tolerance in computer
systems—from circuits to algorithms,” in The Electrical Engineering
Handbook. Burlington: Academic Press, 2005, pp. 427–457.

[10] H. Fang, M. A. Haile, and Y. Wang, “Robust extended kalman filtering
for systems with measurement outliers,” TCST, vol. 30, no. 2, 2022.

[11] P. Frogerais, J.-J. Bellanger, and L. Senhadji, “Various ways to compute
the continuous-discrete extended kalman filter,” TACON, vol. 57, 2012.

[12] M. F. Garrett, Master Minimum Equipment List: Boeing B-737 100/200/
300/400/500/600/700/800/900, Federal Aviation Administration, Renton,
WA, USA, May 2010.

[13] W. Hawkins, J. D. Hiser, A. Nguyen-Tuong, J. W. Davidson et al.,
“Securing binary code,” Security & Privacy, vol. 15, no. 6, 2017.

[14] C. Hersman and K. Fowler, “Chapter 5 - best practices in spacecraft de-
velopment,” in Mission-Critical and Safety-Critical Systems Handbook,
K. Fowler, Ed. Boston: Newnes, 2010, pp. 269–460.

[15] K. Highnam, K. Angstadt, K. Leach, W. Weimer, A. Paulos, and
P. Hurley, “An uncrewed aerial vehicle attack scenario and trustworthy
repair architecture,” in DSN-W, 2016, pp. 222–225.

[16] A. Höller, T. Rauter, J. Iber, and C. Kreiner, “Towards dynamic soft-
ware diversity for resilient redundant embedded systems,” in SERENE.
Cham: Springer International Publishing, 2015, pp. 16–30.

[17] Y. Hu, X. Long, and C. Wen, “Virtual machine based hot-spare fault-
tolerant system,” in ICISS, 2009, pp. 429–432.

[18] Y. Huang, K. Angstadt, K. Leach, and W. Weimer, “Selective symbolic
type-guided checkpointing and restoration for autonomous vehicle re-
pair,” in ICSEW, 2020, p. 3–10.

[19] J. Jang, M. Cho, J. Kim, D. Kim, and Y. Kim, “Paralyzing drones via emi
signal injection on sensory communication channels,” in NDSS, 2023.

[20] J. Jeong, D. Kim, J. Jang, J. Noh, C. Song, and Y. Kim, “Un-rocking
drones: Foundations of acoustic injection attacks and recovery thereof,”
in NDSS, 2023.

[21] H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, “PGPatch:
Policy-guided logic bug patching for robotic vehicles,” in SP, 2022.

[22] J. Kim, S. Kim, C. Ju, and H. I. Son, “Unmanned aerial vehicles in agri-
culture: A review of perspective of platform, control, and applications,”
Ieee Access, vol. 7, pp. 105 100–105 115, 2019.

[23] A. Konert and T. Balcerzak, “Military autonomous drones (UAVs) -
from fantasy to reality. legal and ethical implications.” Transportation
Research Procedia, vol. 59, pp. 292–299, 2021.

[24] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

[25] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” TSE, vol. 38, 2012.

[26] K. Leach, C. S. Timperley, K. Angstadt, A. Nguyen-Tuong, J. Hiser,
A. Paulos, P. Pal, P. Hurley, C. Thomas, J. W. Davidson, S. Forrest, C. Le
Goues, and W. Weimer, “START: A framework for trusted and resilient
autonomous vehicles (PER),” in ISSRE. IEEE Computer Society, 2022.

[27] K. Leach, F. Zhang, and W. Weimer, “Combining secure guard exten-
sions and system management mode to monitor cloud resource usage,”
in RAID, 2017.

[28] F. S. Leira, T. A. Johansen, and T. I. Fossen, “A uav ice tracking
framework for autonomous sea ice management,” in ICUAS, 2017.

[29] J. Li, X. Wei, and G. Zhang, “An extended kalman filter-based attitude
tracking algorithm for star sensors,” Sensors, vol. 17, no. 8, 2017.

[30] M. Liu, L. Zhang, P. Lu, K. Sridhar, F. Kong, O. Sokolsky, and
I. Lee, “Fail-safe: Securing cyber-physical systems against hidden sensor
attacks,” in RTSS, 2022, pp. 240–252.

[31] N. Looker, M. Munro, and J. Xu, “Increasing web service dependability
through consensus voting,” in COMPSAC, vol. 2, 2005, pp. 66–69.

[32] A. Mattavelli, “Software redundancy: What, where, how,” Ph.D. disser-
tation, USI Università della Svizzera italiana, 2016.

[33] I. V. McLoughlin and T. R. Bretschneider, “Reliability through redundant
parallelism for micro-satellite computing,” ACM Trans. Embed. Comput.
Syst., vol. 9, no. 3, 2010.

[34] U. Mehmood, S. Roy, A. Damare, R. Grosu, S. A. Smolka, and S. D.
Stoller, “A distributed simplex architecture for multi-agent systems,”
Journal of Systems Architecture, p. 102784, 2022.

[35] S. M. S. Mohd Daud, M. Y. P. Mohd Yusof, C. C. Heo, L. S. Khoo,
M. K. Chainchel Singh, M. S. Mahmood, and H. Nawawi, “Applications
of drone in disaster management: A scoping review,” Science & Justice,
vol. 62, no. 1, pp. 30–42, 2022.

[36] A. Nguyen-Tuong, D. Melski, J. W. Davidson, M. Co, W. Hawkins, J. D.
Hiser, D. Morris, D. Nguyen, and E. Rizzi, “Xandra: An Autonomous
Cyber Battle System for the Cyber Grand Challenge,” Security &
Privacy, vol. 16, no. 2, pp. 42–51, 2018.

[37] S. Poeplau and A. Francillon, “Symbolic execution with {SymCC}:
Don’t interpret, compile!” in USENIX Security, 2020, pp. 181–198.

[38] G. Rigatos and S. Tzafestas, “Extended kalman filtering for fuzzy mod-
elling and multi-sensor fusion,” Mathematical and Computer Modelling
of Dynamical Systems, vol. 13, no. 3, pp. 251–266, 2007.

[39] J. Rutkowska, “Red Pill,” http://www.ouah.org/Red Pill.html.
[40] ——, “Blue Pill,” http://theinvisiblethings.blogspot.com/2006/06/

introducing-blue-pill.html, 2006.
[41] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and S. Jiang, “Current

practice and a direction forward in checkpoint/restart implementations
for fault tolerance,” in IPDPS, 2005.

[42] N. Schiller, M. Chlosta, M. Schloegel, N. Bars, T. Eisenhofer,
T. Scharnowski, F. Domke, L. Schönherr, and T. Holz, “Drone security
and the mysterious case of dji’s droneid,” in NDSS, 2023.

[43] R. Schneider and C. Georgakis, “How to not make the extended kalman
filter fail,” Industrial & Engineering Chemistry Research, vol. 52, no. 9,
pp. 3354–3362, 2013.

[44] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The simplex archi-
tecture for safe online control system upgrades,” in ACC (IEEE Cat.
No.98CH36207), vol. 6, 1998, pp. 3504–3508 vol.6.

[45] J. Vargas, S. Alsweiss, O. Toker, R. Razdan, and J. Santos, “An overview
of autonomous vehicles sensors and their vulnerability to weather
conditions,” Sensors, vol. 21, no. 16, 2021.

[46] P. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri, “A simplex ar-
chitecture for intelligent and safe unmanned aerial vehicles,” in RTCSA,
2016, pp. 69–75.

[47] D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory study
of autopilot software bugs in unmanned aerial vehicles,” in ESEC/FSE.
ACM, 2021, p. 20–31.

[48] X. Wang and E. E. Yaz, “Second-order fault tolerant extended kalman
filter for discrete time nonlinear systems,” TACON, vol. 64, no. 12, 2019.

[49] S. Wen, Z. Cai, and X. Hu, “Constrained extended kalman filter for
target tracking in directional sensor networks,” IJDSN, vol. 11, 2015.

[50] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation of
control flow integrity using performance counters,” in DSN, 2012.

[51] M. Xie, C. Xiong, and S.-H. Ng, “A study of n-version programming
and its impact on software availability,” IJSS, vol. 45, no. 10, 2014.

[52] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, sep 2021.

[53] Y. Zhang, T. Liu, H. Zhao, and C. Ma, “Risk analysis of can bus and
ethernet communication security for intelligent connected vehicles,” in
AIID. IEEE, 2021, pp. 291–295.

https://ardupilot.org
https://github.com/ArduPilot
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
http://www.ouah.org/Red_Pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html

APPENDIX

A. Extended Kalman Filters

For correct operation in the presence of sensor measure-
ment noise, autonomous vehicles must maintain an accurate
model of position, orientation, and other metrics, which we
collectively refer to as the vehicle’s state. The algorithm used
by our target software platform is the Extended Kalman Filter
(EKF) [11]. EKFs have been used in a wide variety of appli-
cations, including altitude tracking for star sensors [29], target
tracking in directional sensor networks [49], and autonomous
vehicles [38].

An EKF blends sensor measurements with a mathematical
model to get the best approximation of the actual state of
the vehicle. Sensor measurements are known to be affected
by random noise, introduced through ambient environment,
other vehicles or electromagnetic sources, or manufacturing
idiosyncrasies. Thus, a running estimate of the state to com-
pare against means that no one sensor measurement needs to
be fully trusted.

The high level estimation pipeline for an EKF is depicted
in Figure 6. Since the vehicle is in motion, the state will
change between each time step. Thus, the EKF first applies a
mathematical model to the existing state to update the estimate
to account for this motion. At this point, the estimate and
the sensor measurements are compared and used to calculate
a covariance matrix. This covariance matrix is then used to
calculate the Kalman gain for the given time step. The gain
determines the degree to which the sensor measurement or the
running estimate should be favored in calculating the actual
state of the vehicle. The state is updated with a weighted
combination of the sensor data and the state estimate.

This process then repeats on every time step. Thus, the result
is a highly accurate calculation of the vehicle’s state at all
times, even if there are spurious readings from sensors. When
properly tuned, EKFs have been demonstrated to be robust to
varying degrees of sensor error and accuracy [10], [43], [48].

Upon initialization, the EKF is typically seeded with random
values for the state. The vehicle is required to remain station-
ary while the state values converge. After the assumed error
calculated from the covariance falls below a certain threshold,
the vehicle can be operated.

In this work, we leverage the state calculated by a second,
already initialized, EKF filter to jump start the position esti-
mation in our primary EKF filter. By doing this, our approach
does not require the full initialization of the primary filter and
can restart the control software on a moving vehicle.

B. Software Techniques for Automated Resilience and Trust

A recent body of work developed by Leach et al. is the
START framework START takes a program as input—in this
case the vehicle control software—as well as a corresponding
mission plan to execute. Prior to mission execution, it builds
a trust envelope to characterize the expected runtime behavior
(e.g., maximum vehicle speed, expected GPS locations, etc.)
by simulating the mission plan over multiple trials to build a

distribution of expected sensor readings over time. This trust
envelope is then used for runtime monitoring.

START uses a binary rewriting engine that automatically
rewrites a vehicle control stack with security primitives such as
stack canaries, instruction randomization, and instrumentation
that detects memory corruption attacks. Missions are executed
using this hardened control software, rather than the original
provided to START. While the hardened control software is
executed to actuate motors and move the vehicle through

Prior
Assumption

of State

State Vector

Covariance
Matrix

Prediction Step
Based on

physical model

Predicted
State

Predicted
Covariance

Update Step
Compare

predictions to
measurements

Sensor
Measurements

Updated State

Updated
Covariance

Next Timestep

Output of State to
Software

Fig. 6. Abstraction of an Extended Kalman Filter (EKF). Sensor data is fused
with estimates of vehicle location to produce highly accurate knowledge of
the vehicle’s state. The EKF encodes this information in a state vector and a
covariance matrix.

Monitor Vehicle

Distribution authorized to U.S. Government Agencies only (Proprietary Information – Aug 9, 2016. Other
requests for this document shall be referred to AFRL Public Release Center.

Current Prototype: Software Support for
Modeling & Analyzing MAVLink Data

10

• Some constraints are related
or even from the same source,
such as position (lat, lon). We
think of these as a class of
constraints.

• For each class of constraint,
we describe:
– What is measured
– What is the assertion check
– What is the implication of a

failed check

Detect Anomalies

Repair SoftwareDeploy Repair

Fig. 7. START Framework Monitor-Detect-Repair-Deploy Loop. A hardened
binary is deployed to the vehicle for autonomous operation. During vehicle
operation, START monitors signals for signs of anomalies. An automated
repair algorithm searches for a patch that mitigates the anomaly, and the
updated software is deployed to the vehicle.

TABLE III
PARTS LIST FOR DUAL-CONTROLLER AUTONOMOUS VEHICLE. PRICES

LISTED ARE ACCURATE AS OF DECEMBER 2022.

Price
Item Quantity (USD)

1/12 to 1/16 scale 4-wheel-drive RC truck 1 $60
2S 20C LiPo Battery Pack 2 $20
Raspberry Pi 3 B+ 2 $70
Emlid Navio2 Autopilot 2 $400
SiK Telemetry Radio V2 Pair 2 $154
u-Blox Neo-M8N GPS 2 $144
Multiplexer Board 1 $20

Optional Radio Controllers
RC Controller 2 $140
RC Transmitter 2 $152
RC Receiver 2 $64

Total $1,224
Total (without optional parts) $868

a given mission, an anomaly detection engine monitors the
vehicle by comparing real-time signals to the previously
trained trust envelope. If an attacker compromises the primary
controller via the network, or a software fault is encountered,
the framework shuts down the control software and deploys
an automated program repair task. The goal of this repair task
is to produce a variant of the control software that does not
exhibit the same fault behavior. The repair task is guided by
an on-board simulation that randomly mutates the controller
software and checks if the same network inputs would lead
the mission to fail. Once a repair has been constructed, the
software is re-flashed on the platform, and the mission is
restarted. The monitor-detect-repair-deploy loop implemented
by START is depicted in Figure 7.

The START framework was originally evaluated in simu-
lation on a number of attack scenarios developed in a red
team exercise. In simulation, the framework was successful in
continuing a mission in over 85% of the scenarios. However,
the original results do not measure the feasibility of START on
an actual autonomous vehicle, and did not provide a detailed
basis for physically deploying a secondary control stack on
which to execute the automated program repair task. Critically,

START also requires landing or stopping the vehicle while
finding and deploying the repair, leaving a large window for
physical attacks (against the vehicle platform) and precluding
rapid responses to attacks.

C. Hardware

Our platform is built on a 1/12 to 1/16 scale remote control
truck chassis. This design can support a variety of autopilot
computers and controllers; however, to provide the necessary
computational power for onboard software monitoring and re-
pair, we use single-board Raspberry Pi computers with Emlid
Navio2 autopilot Hardware Attached on Top boards (HATs).
Through our testing, we found that the Navio2 provides a good
selection of sensors and has a low failure rate. Unfortunately,
the built-in GPS does not provide suitable accuracy on an RC
car platform, so we have also added external GPS units to our
design. The software controllers are configured to use these
external units rather than the lower-accuracy built-in modules.

Table III provides a high-level parts list for our autonomous
vehicle platform. The vehicle can be built for under 1,000 US
Dollars and adding optional RC controllers for manual control
can be done for under 1,500 US Dollars.

Our prototype implementation uses a crossover Ethernet
connection between the two controllers, which is desirable
for ease of data and file transfer in testing environments,
but exposes a potential attack surface [53]. With a security-
critical deployment, a hardened, shielded serial connection
may be more desirable. With this proposed connection, the
secondary computer is only monitoring the primary controller
and restoring its state in the event of a failure. Therefore
the secondary computer cannot be tainted by a compromised
primary computer. An attacker could also possibly subvert
the monitoring process of START by sending falsified data to
the secondary computer. Although this is possible in theory,
Leach et al. found that in red team exercises, this was not an
indicative attack [26]. Further, this is an inherent limitation of
the START framework and falls outside of the scope of this
work, which aims to adapt the START framework to a real
hardware platform. Our prototype demonstrates the viability of
our approach, especially given our threat model that considers
an attacker using crafted packets over a wireless channel.

	Introduction
	Background
	State Estimation Filters
	Simplex Architecture
	Software Techniques for Automated Resilience and Trust

	Sensor Data Transplantation
	Hardware and Software Assumptions
	Problem Statement
	Transplanting Sensor Data
	Extending an Automated Resiliency Framework to Support Redundant Hardware and Seamless Switchover

	Implementation
	Dual-Controller Architecture
	Multiplexing Motor Control Signals

	Experimental Methodology
	Control Software
	Hardware and System Configuration
	Attack and Fault Scenarios

	Evaluation
	Initialization on a Stationary Vehicle (RQ 1)
	Initialization on a Moving Vehicle (RQ 2 & 3)
	Error in Transplanted Data (RQ 4)
	Control Switchover (RQ 5)

	Discussion
	Generalizability of Results

	Related Work
	Conclusions
	References
	Appendix
	Extended Kalman Filters
	Software Techniques for Automated Resilience and Trust
	Hardware

