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Abstract—We present MNCaRT, a comprehensive software
ecosystem for the study and use of automata processing across
hardware platforms. Tool support includes manipulation of
automata, execution of complex machines, high-speed processing
of NFAs and DFAs, and compilation of regular expressions. We
provide engines to execute automata on CPUs (with VASim and
Intel Hyperscan), GPUs (with custom DFA and NFA engines),
and FPGAs (with an HDL translator). We also introduce MNRL,
an open-source, general-purpose and extensible state machine
representation language developed to support MNCaRT. The
representation is flexible enough to support traditional finite
automata (NFAs, DFAs) while also supporting more complex
machines, such as those which propagate multi-bit signals be-
tween processing elements. We hope that our ecosystem and
representation language stimulates new efforts to develop efficient
and specialized automata processing applications.

I. INTRODUCTION

Years of research and development have resulted in high-
throughput automata processing architectures and software
engines [ 1]-[3]]. This has lead to the discovery of non-obvious
use-cases and application domains for finite automata, such as
natural language processing [4]], network security [5]], graph
analytics [6]], high-energy physics [7[], bioinformatics [8[]-[|10],
pseudo-random number generation and simulation [11]], data-
mining [12]], [[13]], and machine learning [14].

Unfortunately, the software frameworks for the construction,
manipulation, and translation of automata are frustratingly
fractured (e.g. have inconsistent serialization formats) and
restrictively licensed (e.g., Micron licenses a comprehensive
SDK, but it is closed-source and specifically targets their
D480 Automata Processor, or AP [2[]). While these tools are
useful for developing applications for the AP, the tools do not
allow researchers to easily evaluate designs across hardware
platforms, such as CPUs, GPUs, and FPGAs. The tools
also cannot be easily extended to support new architectures
and automata paradigms. Instead, a general and extensible
framework is needed to enable the development of platform-
independent applications and to support experimental automata
designs.

We present MNCaRT (the MNRL Network Computation
and Research Testbed, pronounced “minecart”) [15], a suite

of tools for creating, manipulating, and executing automata

MNCaRT collects a diverse set of automata processing tools

Uhttps://github.com/kevinaangstadt/mncart
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and algorithms into a central location and will grow as new
tools are developed. We currently provide support for compil-
ing state machines from Perl compatible regular expressions
(PCRE) [16] to MNRL, high-speed execution of NFAs and
DFAs using Intel Hyperscan [3]], and optimization and simu-
lation of experimental automata designs with the Virtual Au-
tomata Simulator (VASim) [|17]]. Further, we provide back-ends
for executing DFAs on GPUs (DFAGE) [18], FPGAs [19],
and exploring routing constraints for experimental spatial
architectures via the Automata-to-Routing (ATR) tool [20].
All tools in MNCaRT are publicly available (typically under
BSD licenses), and available pre-installed in a Linux container,
allowing both academics and industry experts to contribute to,
and use, the ecosystem.

To support our ecosystem, we have created MNRL, the
MNRL Network Representation Language (pronounced “min-
eral”), a JSON-based, open-source language to support the de-
velopment of, and experimentation with, new automata-based
applications and architectures. MNRL allows a user to define
a network (or collection) of MNRL nodes, which represent
the states within automata. Each node stores configuration
information (such as node type, name, etc.) and connections
to other nodes within the network. The language specification
is general, allowing state machines other than finite automata
to be represented. We provide initial definitions for traditional
finite automata states, homogeneous states, up-counters, and
Boolean logic in the MNRL specification; additional node
types may be defined by the user for specific applications.

To summarize, this works presents the following:

e MNCaRT, an comprehensive repository of compatible
tools for development, visualization, and analysis of
automata processing on CPUs, GPUs, and FPGAs.

« MNRL, an extensible, open-source JSON specification
for representing state machines.

« Extensions to Intel’s Hyperscan PCRE engine, supporting
compilation to and execution of MNRL files.

o Updated versions of VASim, REAPR, DFAGE, and iN-
FAnt2, which support reading and writing of MNRL files.

II. BACKGROUND AND RELATED WORK

A finite automaton includes of a set of states and a set
of transitions defining how the states become active based
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on symbols observed in an input stream [21]]. In a non-
deterministic finite automaton (NFA), it is possible to transi-
tion to multiple states on the same input symbol. Automata are
often represented as a graph, defining the topological layout
of the computation. Computation is therefore decoupled from
the definition of the state machine, allowing for a common
execution engine to process arbitrary automata, improving
code reuse and reducing sources for bugs. Automata can also
be represented as a set of regular expressions, which define
the search pattern the automata recognize.

In the remainder of this section, we briefly highlight some
existing automata processing engines and discuss limitations
of current automata representation languages.

Automata Processing Engines. Micron’s D480 AP [2] is a
custom hardware accelerator which directly executes homo-
geneous finite automataE] Becchi et al. have developed a set
of tools and algorithms for efficient CPU-based automata
processing [22]], and other CPU engines include Intel’s Hyper-
scan [3]] and Google’s RE2 [23]]. Automata processing engines
have also been developed for GPUs and FPGAs (e.g., [24],
[25]], and [26]). Unfortunately, existing engines do not share
a common automata representation, making cross-architecture
comparison and development of automata-based algorithms
challenging and time-consuming.

Limitations of Automata Representation Languages. The Au-
tomata Network Markup Language (ANML) is a proprietary
description language developed for the Micron D480 AP.
Licensing restrictions make the language challenging to use
for prototyping new automata elements, and additional annota-
tions cannot be added to elements in ANML while maintaining
support for current tools. Therefore it is not a good choice for
unifying automata processing engines.

Becchi et al.’s tools use a simple NFA representation based
on the theoretic definition of NFAs and cannot be easily
extended to support more complex state machines. The lan-
guage is custom, and there is no support in general-purpose
programming languages for reading and manipulating these
files.

Regular expressions are commonly used to generate au-
tomata, but are difficult to develop and maintain. Many appli-
cations (e.g., particle tracking, motif searchers, and rule min-
ing) would be represented by non-intuitive regular expressions
that are often exhaustive enumerations of all possible matches.
Additionally, programming of regular expressions can be ex-
tremely error-prone due to variations in regular expression
syntax, which leads to high rates of runtime exceptions [27].

While other automata representation languages exist (e.g.,
Dot and JFLAP), these present similar licensing, generaliz-
ability, and maintainability challenges.

IIT. MNRL: A JSON-BASED AUTOMATA LANGUAGE

We have developed MNRL, an extensible, open-source au-
tomata representation language, which allows for the topolog-

2In a homogeneous NFA, all incoming transitions to any given state must
occur on the same input character.

1 {
2 "id": "Ot_151_5r",

3 "type": "hState",

4 "enable": "onActivateIn",
5 "report": true,

6 "inputDefs": [

7

8 "width": 1,

9 llportIdll: "i"

10 1

11 I

12 "outputDefs": [

13

14 "width": 1,

15 "activate": [],

16 "portId": "o"

17 }

18 1,

19

20 "attributes": {

21 "reportId": 5,

22 "latched": false,

23 "symbolSet": "[\\xFF]"
24

25}

Fig. 1. Sample MNRL homogeneous hState Node. The node is enabled

(performs computation) only after an incoming edge is active (line 4), and this
node matches against the input character \XFF (line 23). When this occurs,
the node generates a report signal (line 5). Lines 6-11 define a single input
port for incoming edges. Lines 12-18 define a single output port for outgoing
edges. The array on line 15 is empty, indicating that there are no outgoing
edges.

ical specification of a collection of finite state machines using
JSON syntax. While JSON is supported by most common
general-purpose programming languages, we provide C++ and
Python bindings to support additional validation checks.

It is important to note that the MNRL format specifies the
layout of a machine but does not specify how elements behave,
allowing many types of state machines to be represented,
including traditional NFAs [21]] and homogeneous NFAs [ZS]EI
Behavior is left for the execution engine to specify and
implement (allowing MNRL to be an extremely flexible file
format). Therefore, MNRL is similar in intent to the Unified
Modeling Language (UML), in which developers describe
and design software systems while eliding implementation
details [29].

A. MNRL Format

A MNRL file contains a single MNRL network—a collec-
tion of one or more state machines that are executed in parallel
using the same input. The file contains an array of MNRL
nodes, which define each element in the network. An example
node is given in Figure [I] A node consists of:

¢ A unique identifier

e« A node type (state, homogeneous state, up counter,
boolean, etc.)

« How the node is enabled (e.g. on the start input process-
ing or when an incoming edge is active)

3MNRL is general enough to represent more powerful machines (e.g. push-
down automata, cellular automata, and Turing machines).



o Whether the node reports (generates an output signal)
when activated

e An array of input ports, each with a unique ID and
specified width (number of wires)

« An array of output ports, each with a unique ID, specified
width, and list of connected nodes

« Custom attributes, specific to each element type

A developer can encode the topological layout of the state
machines within the network and to specify the sort of
behavior the underlying execution engine should assign to each
node. The implementation of behavior is not defined in the
MNRL file; instead, the computation engine that processes a
MNRL network is responsible for specifying the semantics for
each node type. Therefore, node types and execution engines
are typically co-designed. If an engine needs information
(e.g. symbol sets for matching against an input stream) to
process a node, this configuration can be embedded in a
MNRL node’s attributes. For the standard node types, we
have specified additional attributes to support their respective
expected behaviors[]

B. Extending the MNRL Schema

MNRL is designed to be extensible, enabling research on
new, custom automata functionality and allows researchers to
quickly define custom attributes for new node types. We pro-
vide the specification of MNRL as a JSON schema [31]], which
allows for validation of file syntax. Because custom node types
become part of the JSON schema, prototype extensions to the
MNRL format can still be statically checked with minimal
effort from the developer. The MNRL file format could easily
be extended to support additional node types such as non-
deterministic counters [32], and stacks (to support push-down
automata). Because MNRL supports variable-width ports, it
is also possible to represent elements that share more than a
single bit of data with elements downstream.

IV. THE MNCART ECOSYSTEM

Our goal with this work is to enable the development of a
rich, vibrant ecosystem of compatible tools for manipulating
and executing automata. We are collecting these tools in an
umbrella repository, the MNRL Network Computation and
Research Testbed (or MNCaRT). By keeping tools catalogued
in a single location, we hope to maintain the interoperability of
tools and reduce fracturing in the ecosystem. We also provide
a Linux container configured to use all of the MNCaRT toolsE]

Figure [2] describes the interaction between tools provided
with MNCaRT. Our ecosystem supports workflows beginning
with high-level languages, such as PCRE, and ending with
execution on CPUs, GPUs, and FPGAs. We also support
execution on Micron’s Automata Processor via conversion
to Micron’s Automata Network Markup Language (ANML).
Additionally, we provide compatible benchmarks for testing
and experimenting with tools in MNCaRT. In this section, we

“4For additional details, please see Angstadt et al. [30].
Shttps://hub.docker.com/r/kevinaangstadt/mncart
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Fig. 2. Tools supplied as part of MNCaRT. These fall into four categories:
front-end representations (both high-level and representation languages),
benchmarks, transformation and compilation tools, and hardware and software
execution engines.

briefly describe the tools that make up the initial release of
MNCaRT.

A. High-Level Languages

Regular Expressions. Our framework supports programming
models that represent pattern searches at higher levels of
abstraction. We compile PCRE to MNRL files using Intel
Hyperscan’s parsing and compilation routines [3]. Hyper-
scan is an open-source, industry-standard regular expression
processing library supported by Intel. The tool returns a
graph representation of the compiled state machine, which we
traverse to generate a MNRL file.

RAPID. RAPID is a high-level programming language for
execution of sequential pattern-matching applications [33]].
This C-like language is extended with three keywords to
support parallel matching of patterns against a single data
stream as well as sliding window pattern recognition. We have
extended the RAPID compiler to emit MNRL files, allowing
for high-level programming within the MNCaRT ecosystem.

B. Benchmarks

ANMLZoo. The ANMLZoo benchmark suite contains a di-
verse set of automata applications and associated input stim-
uli [18]. Applications range from configurable, synthetic
benchmarks to algorithms that are not easily represented by
regular expressions and can therefore have vastly different
execution characteristics. We have generated MNRL represen-
tations for all benchmarks in the suite.


https://hub.docker.com/r/kevinaangstadt/mncart

C. State Machine Representations

MNRL. Our JSON-based automata representation language
provides the glue for MNCaRT ecosystem. This allows the
various tools to function seamlessly with each other. Further
details regarding MNRL may be found in Section [III}

ANML. MNCaRT also supports Micron’s Automata Network
Markup Language (ANML) and therefore allows performance
comparisons with the D480 AP. We provide this support
via a translation to MNRL. This translation is supported for
MNRL node types provided with our default distribution of
the language. Because element types in ANML are dictated
by the design of the AP, our translator does not support custom
node types.

D. Analysis, Transformation, and Compilation

Hyperscan Compilation. We provide an extension to Hyper-
scan (hscompile) that parses MNRL files and compiles finite
automata to a serialized Hyperscan pattern database, allow-
ing offline compilation. Hyperscan is an industry standard
automata processing toolchain that offers a state-of-the-art,
high-performance CPU automata processing engine.

VASim. We have extended VASim [17] to support parsing
of MNRL files. VASim is a general-purpose framework for
automata simulation, optimization, transformation, and per-
formance modeling. The tool enables prototyping, debugging,
simulation, and analysis of automata-based applications and
architectures. Additionally, VASim can parse Micron ANML
files, allowing for conversion with MNRL.

Automata Lab. Automata Lab is a web-based graphical en-
vironment for visualizing, editing, and simulating finite au-
tomata [34]. The tool uses VASim to manipulate automata, and
the resulting state machines are displayed graphically, allowing
for user interaction. Users may upload MNRL files or choose
from applications in the ANMLZoo benchmark suite.

REAPR. REAPR [19] is a design automation tool for gener-
ating highly-efficient FPGA-based automata kernels. REAPR
generates RTL representations of homogeneous finite au-
tomata, a class of automata also implemented by Micron’s
AP. Additionally, REAPR generates a reporting architecture,
which allow for pattern matches discovered by the executing
automata to be communicated back to the host system.

Automata-to-Routing. ATR utilizes the Versatile Place and
Route (VPR) tool to model spatial automata processing archi-
tectures [35]]. We use VASim to emit VPR-readable circuits of
MNRL networks and provide guidance to construct custom,
parameterizable, spatial architecture description files to accept
these custom state machine circuits. ATR is thus capable of
modeling spatial architectures that are purpose-built to accept
MNRL state machines.

E. Execution Engines

Hyperscan CPU Engine. We provide a tool (hsrun) for
processing MNRL files against an input stream using the Hy-
perscan execution core. This tool deserializes the Hyperscan
pattern database and node mapping produced by hscompile.
The tool then scans the given input file against the database
and prints out human-readable reporting information (e.g.
MNRL ID and input stream offset). If multiple compiled
MNRL files and/or input files are passed to hsrun, the tool
will execute all pairings of the files using a supplied number
of threads.

VASim CPU Engine. In addition to support for transformation
and analysis of finite automata, VASim supports simulation
of a diverse set of finite automata models. While Hyperscan
achieves higher throughput, VASim’s modular design allows
for quick prototyping to test new automata elements and
designs, such as those including custom compute units.

FPGA Engine. In addition to generating hardware NFA ker-
nels, REAPR can also generate a full platform execution
environment for certain automata applications. The REAPR
platform has been demonstrated to offer up to 183x speedup
over best-effort CPU implementations [19].

GPU Engines (DFAGE and iNFAnt2). MNCaRT contains
both a GPU-based DFA engine (DFAGE) and NFA engine
(iINFAnt2). The NFA engine was described previously by
Wadden et al. [[18]]; we therefore briefly describe DFAGE. Use
of DFAGE first requires automata to be transformed into one or
more DFAs using VASim. Note that this process is performed
offline by the CPU. Each DFA consists of a state transition
table and an acceptance vector, both of which are stored in the
GPU’s global memory. A transition table is represented by a
2-D array containing the next state identifiers for every pair of
current state identifier and input symbol. Similar to previous
implementations, our DFA matching engine supports multi-
packet processing to take advantage of the extreme parallelism
of GPU architectures.

V. CONCLUSIONS

We present MNCaRT, a suite of tools for analyzing, ex-
ecuting, and transforming automata networks. We support
execution of MNRL networks on CPUs, GPUs, and FPGAs,
and we provide a workflow for execution on Micron’s AP.
Support for high-level pattern-matching languages, such as
PCRE and RAPID is also provided as part of MNCaRT.
Finally, we allow for design space exploration through analysis
functionality in the VASim and ATR tools. We hope that this
suite of tools will enable innovation and in this emerging, and
important application domain.
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