
Characterizing and Mitigating Output Reporting
Bottlenecks in Spatial Automata Processing Architectures

Jack Wadden, Kevin Angstadt†, Kevin Skadron
Department of Computer Science

University of Virginia, Charlottesville, VA, 22904
{wadden, skadron}@virginia.edu

†Computer Science and Engineering
University of Michigan, Ann Arbor, MI, 48109

angstadt@umich.edu

ABSTRACT
Automata processing has seen a resurgence in impor-
tance due to its usefulness for pattern matching and pat-
tern mining of “big data.” While large-scale automata
processing is known to bottleneck von Neumann pro-
cessors due to unpredictable memory accesses, spatial
architectures excel at automata processing. Spatial ar-
chitectures can implement automata graphs by wiring
together automata states in reconfigurable arrays, al-
lowing parallel automata state computation, and point-
to-point state transitions on-chip. However, spatial au-
tomata processing architectures can suffer from output
constraints (up to 255x in commercial systems!) due
to the physical placement of states, output processing
architecture design, I/O resources, and the massively
parallel nature of the architecture.

To understand this bottleneck, we conduct the first
known characterization of output requirements of a re-
alistic set of automata processing benchmarks. We find
that most benchmarks report fairly frequently, but that
few states report at any one time. This observation
motivates new output compression schemes and report-
ing architectures. We evaluate the benefit of one purely
software automata transformation and show that out-
put reporting costs can be greatly reduced (improving
performance by up to 40% without hardware modifica-
tion. We then explore bottlenecks in the reporting ar-
chitecture of a commercial spatial automata processor
and propose a new architecture that improves perfor-
mance by up to 5.1x.

1. INTRODUCTION
Moore’s law and the breakdown in Dennard scaling

have led to architectures with large transistor budgets
but with strict power constraints. To maintain perfor-
mance scaling, architects are increasingly using domain-
specific specialization in systems to increase both power
efficiency and performance.

One application domain that has seen increased in-
terest over the last decade is finite state machine com-
putation or automata processing. Automata processing
is one of the Berkeley 13 parallel motifs [1] and is an im-

portant kernel in network traffic analysis [2], and virus
detection [3]. Due to the ever growing amount of data
and increasing velocity of network traffic [4], quickly
and efficiently identifying patterns and information in
databases and packet streams has become increasingly
important.

Furthermore, new research has shown that many im-
portant application domains can be represented as finite
automata, and would benefit from specialized automata
accelerators. Examples include natural language pro-
cessing [5], network security [6], graph analytics [7],
high-energy particle physics [8], pseudo-random num-
ber generation [9], bioinformatics [10, 11, 12], data-
mining [13, 14, 15], and machine learning [16, 17]. Re-
search continues to discover novel and exciting automata
applications motivating the importance of acceleration
of automata computation.

Many attempts have been made to accelerate finite
automata computation using both CPUs [18, 19, 20]
and GPUs [21, 20]. However, the challenging memory
access patterns and large bandwidth requirements for
automata simulation often cause memory bottlenecks
on von Neumann architectures.

Spatial, reconfigurable architectures, such as field pro-
grammable gate arrays (FPGAs), usually offer much
improved performance over von Neumann solutions [20].
Spatial architectures consist of reconfigurable networks
of processing elements, and implement automata graphs
by wiring together processing elements using a place-
and-route algorithm. Spatial architectures excel at au-
tomata processing, because they allow massively paral-
lel state-matching computation and point-to-point tran-
sition rule communication using parallel processing ele-
ments [20]. Thus, spatial architectures are performance
inelastic and have the same performance no matter how
many state transitions are computed in parallel.

However, spatial architectures suffer from two main
drawbacks: I/O pin scarcity, and I/O bandwidth con-
straints. The first drawback, I/O pin scarcity, makes
routing the results from many thousands of possible re-
porting automata states off chip extremely challenging.
Simply routing reporting signals through I/O pins does
not scale and is not applicable beyond small applica-

tions. Prior work has used application-specific com-
pression to compress results to fit within a relatively
narrow output bus [22]. While successful, this type of
automata-specific reporting architecture is not always
possible and not a general purpose solution to support
a wide array of applications with many thousands of
possible unique reports.

The second drawback, I/O bandwidth constraints,
cause slowdowns when large amounts of information
need to be quickly exported off-chip. Because spatial
automata processing architectures compute many state
transitions in parallel, and may match many patterns
within a single cycle, they can generate a massive amount
of output, and become bottlenecked by I/O operations.
For example, Micron’s D480 Automata Processor—an
automata-specific spatial architecture that supports up
to 6,144 reporting states per chip—must stall for up
to 255 cycles if many reports occur on a single symbol
cycle [23]; a 255x overhead! Even when applications
have more modest reporting (e.g. a single report ev-
ery 10 cycles) the minimum performance penalty is a
6.5x slowdown over ideal computation with no report-
ing. Every spatial automata processor must somehow
combine or compress a possibly large number of report
signals. Careful attention is needed to design reporting
architectures that can support both a large number of
reporting states, and frequent reporting events. Oth-
erwise, reporting overheads will eat into much of the
performance benefits of spatial architectures over von
Neumann architectures.

This paper focuses on characterizing and mitigating
the output reporting problem for spatial automata pro-
cessing architectures. To the best of our knowledge,
this paper is the first to characterize reporting behav-
ior across a wide variety of automata benchmarks and
recognize its importance in automata-processing appli-
cation and architecture design. We first characterize
automata-processing output requirements using ANM-
LZoo, a standardized benchmark suite [20]. We use
the VASim virtual automata simulator [24] to track
the density and frequency of reporting events inside au-
tomata graphs. We find that usually there are only a
few automata states that report on any one input sym-
bol (sparse reporting), but that reporting events can oc-
cur extremely frequently. In rare cases, many automata
states may need to report on the same input symbol
(dense reporting), but fairly infrequently. This moti-
vates the design of spatial reporting architectures that
are optimized to support efficient handling of a small
number of frequent reports at low-cost (the common
case), but do not hurt performance when reporting is
dense (the uncommon case).

To better understand the overhead associated with
output reporting in real spatial architectures, we de-
velop a novel parameterizable cycle-accurate simulator
methodology for spatial architectures. We validate this
simulator methodology by configuring it to model an
example real-world spatial automata processor (the Mi-
cron D480 Automata Processor or AP) and show that
output reporting overhead in this architecture can be

extremely high, causing up to 46x performance degrada-
tion. This particular reporting architecture is designed
to efficiently handle dense reporting, but pays a large
penalty when reporting is sparse. Thus, when faced
with common-case reporting behavior of automata ap-
plications, overheads can be extremely high.

Motivated by this high overhead, we consider meth-
ods to increase spatial architecture performance by re-
ducing report-output overhead, while still supporting
a large number of reporting states. The first method
we consider modifies the automata graph, combining
reporting state outputs that can provably be disam-
biguated when activated. By combining reporting states,
we can reduce output port pressure on the reporting
architecture. This transformation is purely a software
change, and does not require added hardware.

The second method we consider is a new reporting
architecture design for automata processing on FPGAs
and automata-specific spatial architectures. Using re-
porting characteristics discovered from application pro-
filing, we design a configurable reporting architecture
that increases performance over the Micron D480 AP re-
porting architecture, while still supporting a large num-
ber of generic output ports. This architecture improves
performance when reporting is sparse, and performs just
as well as the AP when reporting is dense.

This paper makes the following contributions:

• To the best of our knowledge, the first character-
ization of automata reporting frequency and den-
sity over a large set of diverse automata bench-
marks. This study motivates direct changes to ex-
isting automata-processing architectures, and in-
fluences design of future architectures.

• A novel methodology for cycle-accurate simulation
of spatial automata processors, validated against
real hardware. The simulator combines public de-
scriptions of the cycle costs of certain operations
with placement information from spatial place-and-
route tools to generate highly-accurate performance
metrics. We simulate a commercial automata pro-
cessor and identify that automata reporting can
cause severe overheads – up to 46x over ideal per-
formance with no reporting.

• A software-based automata transformation to re-
duce the cost of output reporting on existing spa-
tial architectures. This automata transformation
requires no changes to underlying hardware and
increases performance by up to 40%.

• A new, configurable reporting architecture design
for spatial automata-processing architectures that
can be configured for both sparse and dense re-
porting. When compared to existing reporting ar-
chitectures tailored for dense reporting, our config-
urable architecture shows speedups of up to 5.1x
when reporting is sparse (the common case), and
never hurts performance when reporting is dense
(the uncommon case).

These studies not only motivate architecture changes
in future automata-specific spatial architectures, but
also reporting architectures implemented in automata
processing engines on general purpose spatial architec-
tures, such as FPGAs. Our simulator is flexible to ac-
count for any spatial architecture solution that relies on
compressing and buffering output reports. Our work
identifies that reporting, which has been ignored thus
far, is a first-class design constraint and should be one
of the main focus areas of spatial automata processing
architecture research.

2. BACKGROUND
2.1 Automata Processing

Informally, finite automata are defined as a directed
graph consisting of states and transition rules between
states. Transitions between states in automata are driven
by an input tape of symbols that are globally visible.
One iteration of computation that considers an input
symbol is called a symbol cycle. Each automaton has
one or more start states that initiate computation. States
that are currently performing computation are said to
be enabled. During a symbol cycle, each enabled state
compares the current symbol on the input tape with a
pre-defined set of symbols. If the symbols match, the
state activates, propagating a transition signal to all of
its children. All children of activated states are then en-
abled to perform computation during the next symbol
cycle.

Each automaton also has one or more reporting states.
If a reporting state activates, the ID of the report state
and the current position in the input symbol tape are
recorded as output to the user. Reporting occurs when
an automaton successfully identifies a specified pattern
on the input tape.

2.2 Spatial Automata Processing
Von Neumann architectures struggle to handle the

large number of difficult-to-predict memory accesses in
large automata. However, spatial architectures excel at
large automata processing. Spatial architectures (i.e.,
architectures with arrays of reconfigurable processing
elements such as FPGAs) can place and route automata
states in a reconfigurable fabric—akin to gates in a cir-
cuit. As long as automata graphs can fit within the
resources of the spatial architecture, all states can com-
pute and communicate in parallel and process a sin-
gle input symbol per cycle. Thus, for highly-active au-
tomata, spatial architectures can be several orders of
magnitude faster than von Neumann architectures [20].

However, spatial architectures can suffer from output
reporting constraints. If many reports are generated
on a particular cycle, the architecture is responsible for
exporting those reports off chip. If these reports cannot
be exported in a single cycle, the architecture must stall,
incurring a performance overhead.

Prior work has explored many configurations on gen-
eral purpose reconfigurable hardware [25, 26, 27, 28,
22]. While these implementations showed impressive
acceleration potential over existing von Neumann tech-

niques, none considered a wide variety of automata ap-
plications or I/O constraints for large automata.

Micron’s Automata Processor [29] is an “automata
specific” spatial architecture that gains efficiency over
more general-purpose reconfigurable fabrics [30]. Prior
work investigating performance of applications imple-
mented on the AP often report nominal performance [5,
31], without regard to how automata reports are ex-
ported off chip. However, real-hardware performance
depends heavily on how the architecture handles ex-
porting reports generated by the automata [23].

In this paper, we study the impact of reporting on a
diverse set of applications and study the impact of I/O
constraints in spatial architectures on automata pro-
cessing. We perform a cycle-accurate analysis of the
AP reporting architecture using our proposed frame-
work to draw attention to reporting overheads in exist-
ing systems and to characterize reporting requirements
for future, more efficient architectures.

3. CHARACTERIZING AUTOMATA
REPORTING BEHAVIOR

To understand typical reporting behavior in various
automata use-cases, we first profile benchmarks from
the ANMLZoo automata benchmark suite [20]. AN-
MLZoo is a diverse set of finite automata and asso-
ciated input streams adapted from real-world applica-
tions. Characterizing the behavior of these benchmark
applications will help motivate architectures that bet-
ter satisfy real-world requirements. To the best of our
knowledge, this is the first study of reporting behavior
in a wide range of diverse automata applications.

3.1 Experimental Methodology
We use the Virtual Automata Simulator (VASim) [24]

to simulate the 12 non-synthetic ANMLZoo applica-
tions on the 1MB ANMLZoo standard inputs. We use
non-synthetic applications, because the synthetic bench-
marks are designed for micro-benchmarking von Neu-
mann automata processors and do not attempt to give
insight into real-world application behavior.

Before we simulate automata, we first run VASim’s
standard redundancy-elimination optimization passes.
In some instances, automata benchmarks have fully re-
dundant automata that can be identified and merged.
Usually, VASim preserves redundant reporting states so
that the functionality of the automaton is indistinguish-
able from the original graph. For this study, we mod-
ify the standard VASim redundancy-elimination pass so
that these automata and their reporting states are fully
merged. However, we map a single report state to mul-
tiple virtual state IDs. Thus, automata functionality is
not affected, but reporting overheads are reduced. This
mimics the behavior of the Micron AP compiler [32].

We then simulate the automata on the standard 1MB
ANMLZoo inputs provided with the benchmark suite
and track every report over the course of automata ex-
ecution. The total number of reports (Reports) is dis-
tinguished from the total number of cycles in which any
number of reports occurred (Report Cycles or RCycles).

Table 1: Summary statistics for ANMLZoo reporting behavior
Benchmark Family Reports Report Cycles Reports/Cycle Reports/RCycle Max/RCycle Std.Dev/RCycle Index of Disp.

Snort Regex 1,710,495 995,011 1.710495 1.719 6 0.567 0.197
Dotstar Regex 0 0 0 0 0 0 0
ClamAV Regex 0 0 0 0 0 0 0
PowerEn Regex 4,304 4,303 0.004 1.000 2 0.015 0.996

Brill Regex 429,386 118,005 0.429 3.640 11 1.585 3.900
Protomata Regex 111,239 105,722 0.111 1.052 4 0.230 0.991
Hamming Mesh 2 2 2e-06 1.0 1 0 0.999

Levenshtein Mesh 4 4 4e-06 1.0 1 0 0.999
ER Widget 37,628 28,612 0.0380 1.315 3 0.523 1.490
SPM Widget 47,304,453 33,933 47.304 1394.055 1792 283.980 1,404.599
Fermi Widget 96,127 13,444 0.096 7.150 20 4.503 9.890
RF Widget 21,310 3,322 0.021 6.415 9 0.710 6.472

Because we used ANMLZoo’s 1MB inputs, the total
number of cycles for the entire application is 1,000,000,
as we assume 1 symbol is processed per cycle in spa-
tial systems. Because there are 12 applications, and
report traces are large, we present varying summary
statistics. These summary statistics will guide our bot-
tleneck analysis and motivate efficient reporting archi-
tecture designs. Results are shown in Table 1.

3.2 Profiling Results
Reporting behavior in the ANMLZoo benchmark suite

varies highly from application to application. Some
applications do not report at all (ClamAV, Dotstar).
While it might seem strange for a benchmark to not
use all of its states, this is not bad behavior. ClamAV
is a set of virus scanning signatures. As input, ANM-
LZoo chose a semi-arbitrary file to represent common
case input. This happens to not be a virus, and so no
reports should be expected. Some applications, such
as Hamming and Levenshtein, report very infrequently.
Hamming and Levenshtein automata identify strings
that approximately match encoded strings in the au-
tomata. Their input was generated randomly, and only
very few strings within the scoring metrics were iden-
tified. While these particular workloads do not bottle-
neck spatial processors, this does not mean that these
applications could not be bottlenecked by reporting us-
ing different automata and/or input streams.

Eight applications (Snort, PowerEN, Brill, Protomata,
ER, SPM, Fermi, RF) report more than a trivial amount.
Reporting behavior in these applications is highly vary-
ing. Some applications report on almost every cycle
(Snort), while others report with varying frequency up
to about once every 300 cycles (RF).

Furthermore, when applications report on a given cy-
cle, there are varying numbers of reports. For instance,
on one hand, PowerEN mostly only has a single report
per cycle, and never has more than two reports. On
the other hand, SPM has an average of almost 1,400
distinct reports for each reporting cycle. SPM is an
outlier, with most applications having low, single-digit
numbers of reports per reporting cycle.

To get a sense for the distribution and volume of re-
ports in ANMLZoo, we use a metric called the index of
dispersion (IoD). The IoD is the ratio of the variance of
a data stream to the mean of a data stream and, infor-
mally, measures how “bursty” data streams are. We cal-
culate the IoD for each ANMLZoo benchmark using the

number of reports per symbol cycle to get sense for the
average reporting behavior of each benchmark. IoD’s
equal to zero (Dotstar, ClamAV) mean that the num-
ber of reports generated per cycle has a variance equal
to zero, and thus the same number of reports were gen-
erated for every cycle. Applications that never report,
and therefore always report ’0’ times are perfectly reg-
ular and therefore have a IoD of 0. IoD’s less than one
(Snort) indicate very regularly-spaced reporting events
of regular size. Snort reports on almost every cycle and
usually has one or two reports. Thus its IoD is very low
(0.197). IoD’s approximately equal to one (PowerEN,
Protomata) are what we would expect from a Poisson
distribution, indicating there is no regular pattern in re-
porting. IoD’s greater than one (Brill, ER, SPM, Fermi,
RF) indicate clumped reporting, where reporting events
are more likely to be large and clustered in time, e.g.
when a signature or event is recognized. SPM in par-
ticular is extremely “bursty,” reporting many times per
report cycle, but intermittently.

The above characterization shows that, while report-
ing behavior is diverse, most benchmarks with non-
trivial reporting behavior report fairly frequently, but
do not create many simultaneous reports, i.e. are not
very“bursty”. Average reports per Report Cycle usually
falls between 1 and 7. Maximum values for every ap-
plication but SPM never exceed 20. This result should
be intuitive. Automata are usually designed for parallel
matching of various diverse patterns, thus recognizing
multiple patterns at once should be a rare event. These
observations motivate reporting architectures that can
handle these common cases with very low overhead. In
the next section, we present a parameterizable reporting
architecture simulator to explore performance bottle-
necks in real spatial automata processors, and potential
solutions.

4. SIMULATING SPATIAL
AUTOMATA PROCESSORS

When considering automata processing on spatial, re-
configurable architectures such as FPGAs and Micron’s
Automata Processor, performance of the automata en-
gine is ostensibly equal to the operating frequency of the
placed-and-routed design. Because automata match-
ing computations and communication happens within
a single cycle, the time it takes to run automata on
the input symbol stream is equal to the symbol cycle
time of the device multiplied by the number of sym-

Spatial
Automata
Processor

Host
System

R
A O
ut

pu
t D

at
a

Bu
s

Spatial Automata Processor System

Reporting Architecture

Report Queue

Report Queue

Report Queue

…

R
A

R
A

…

Figure 1: Abstract spatial automata processor system.

bols in the input symbol stream. While prior work of-
ten reports this nominal, “kernel” performance [5, 31],
real-hardware performance also depends heavily on how
the architecture handles exporting reports. Some prior
work uses equation-based models to more accurately es-
timate output reporting costs [6, 11]. However, this
technique is not validated against real hardware and
fails to account for complexities of dynamic behavior.

FPGA-based automata acceleration usually only re-
ports nominal operating frequency of the design. To the
best of our knowledge, only one FPGA-based system re-
ports real-hardware, end-to-end performance numbers
on large automata [22]. However, this work only con-
siders a single application (Random Forest [20]) and
compresses reporting states using custom, application
specific hardware, and is thus not a general purpose so-
lution or analysis [22].

To solve these problems, we present a flexible method-
ology for both accurate performance modeling of exist-
ing spatial architectures (to identify performance bot-
tlenecks) and architecture research (to evaluate the im-
pacts of changes to performance sensitive parts of the
micro-architecture). We first present a parameterizable
automata processing simulator. Report traces gener-
ated by the Virtual Automata Simulator tool VASim [24]
can be fed to this simulator to generate cycle-accurate
run-time estimates. We then validate this methodology
against real spatial automata processing hardware and
show it is highly accurate.

4.1 Spatial Automata Processor System
We first present an abstract, parameterizable automata-

processing system architecture that can be used to in-
vestigate high-level performance impacts of spatial ar-
chitecture reporting architectures. A figure showing the
abstract automata processing system is shown in Fig-
ure 1. Each major structure is described below.

4.1.1 Automata Processor
For spatial automata processing, computation is stream-

ing. The inputs are the symbols that drive state transi-
tions in parallel within the spatial fabric, and the out-
puts are the reports from each reporting state that ac-
tivates during computation. Because the input symbol
stream requires a single byte per symbol cycle, and has
perfectly predictable spatial locality, we assume the in-
put system can easily be designed to support this re-
quirement. The automata processing architecture then
consumes one symbol, computing matches, and com-
municating state transitions point-to-point, all within a

single cycle. If a report state activates, a special signal
is routed to the report aggregator circuit.

4.1.2 Report Aggregation
The Report Aggregator (RA) is responsible for turn-

ing reporting events into data packets that can be ex-
ported off-chip for further processing. In this system
we abstract report aggregation and offer three config-
urable parameters: 1) the number of input signals the
RA is responsible for converting into packets, and 2) the
number of RA circuits assigned to the automata. We
assume each RA can consume and aggregate a single
report event in a single cycle in a pipelined manner.

4.1.3 Report Queues
Once an RA converts reporting events into data pack-

ets, the RA pushes these packets to a Report Queue
(RQ). The RA can send a certain number of packets
to the RQ in a single cycle. Thus, if the RA creates
more packets than can be pushed to the RQ, the entire
system must stall. Queues enable output to be batched
for more efficient transfer off chip.

4.1.4 Output Data Bus
Once an RQ fills, the automata processing system

stalls, and the queue is offloaded via the Output Data
Bus. We assume the hypothetical system is capable of
exporting the entire RQ in a single transaction with a
certain cycle cost. Multiple RQs may share the same
output bus, and thus must arbitrate for the bus on a
reporting event.

4.2 Simulation Methodology
The above system can be simulated by assigning au-

tomata reporting states to ports in RAs, and tracking
reporting events during automata simulation. Because
we assume each symbol is executed by the automata
processor on a single cycle, we set the base cost of con-
suming a symbol as one cycle in our simulator. We also
assume that report aggregation is pipelined, and only
requires one cycle to generate a report. We currently
ignore pipeline startup costs as they are implementa-
tion dependent, and most likely small in comparison to
the costs of megabyte input automata processing. We
assume that the only event that can cause stalls in the
system are the filling, and subsequent export of a Re-
port Queues over the Output Data Bus. When a report
queue fills, its export transaction cost is calculated and
added to the total cycle count.

The simulation steps are formalized in Algorithm 1.
For clarity, we consider reporting costs for a single re-
port buffer and report the cycle cost for export as a fixed
value. This algorithm can be directly extended to sup-
port both additional queues and export costs relative to
chunks of data.

5. CASE STUDY: THE MICRON D480 AP
To demonstrate how our parameterizable simulator

can be used to identify bottlenecks in real architectures,
we configure it to model performance of a the Micron
D480 AP [29]. The next sections describe the archi-
tecture of the Micron D480, the parameters used to

input : Number of report aggregators
input : Number of entries, q, in report queue
input : Export cost, k, in cycles
input : function RA returns the RA of a given state
input : function ST returns ST state associated with

report event
input : ordered map R of reporting cycles to list of

report events
output: Total number of cycles needed to process the

reporting events

1 total cycles← 0;
2 queue entries← 0;
3 foreach c⇒ E ∈ R do
4 total cycles← total cycles + 1;
5 set P ;
6 foreach report event e ∈ E do
7 add RA(ST (e)) to set P ;
8 end
9 for i← 1 to |P| do

10 if i > 1 then
11 total cycles← total cycles + 1;
12 end
13 queue entries← queue entries + 1;
14 if queue entries = q then
15 total cycles← total cycles + (k ∗ q);
16 queue entries← 0;
17 end

18 end

19 end
20 total cycles← total cycles + (k ∗ queue entries);
21 return total cycles

Algorithm 1: Cycle-Accurate Reporting Over-
head Simulation for a Single Report Queue

configure our spatial architecture simulator to match
the D480 reporting architecture, simulator validation,
and simulated performance results for the ANMLZoo
benchmark suite. The lessons learned in the case study
will help guide the design of future spatial automata
processors, such as those developed on FPGAs.

5.1 The AP D480 Reporting Architecture
Figure 2 shows an overview of the reporting architec-

ture of the Micron D480 AP. Each D480 chip is orga-
nized into two half-cores. Each half-core has three re-
porting regions, and each reporting region is responsible
for recording up to 1,024 single-bit reports from 1,024
different states into a report vector on any given cycle.
Reports are generated by routing the outputs from re-
porting states to ports in each reporting region. If any
one state reports in a region, the region generates a bit-
mapped report vector with 1,024 report bits (where 0’s
represent no report, and 1’s represent a report), and a
64-bit metadata tag containing the region and cycle in-
formation of that report. These report vectors are then
pushed to a first-level (L1) storage buffer.

When full, L1 buffers are exported into one of two
global, second-level storage buffers for eventual export
off-chip [23]. The AP must stall when an L1 buffer
transfers its contents to an L2, because a report vector
generated in subsequent cycles cannot be pushed to the
L1 buffer while it is exporting vectors. However, the
AP does not stall when an L2 buffer transfers its con-
tents off-chip because this structure is double-buffered
(i.e. when one L2 buffer is being exported off-chip, the

Figure 2: The Micron D480 reporting architecture.

D480 Structure Default

Half-cores per chip 2
Reporting regions per half core 3
L1 report vector buffers per region 1
Report vector width 1024 bits
Vector metadata size 64 bits
L1 buffer entries 481
L1 empty check cost 2.5 cycles
L1 export initiation cost 15 cycles
L1 export cost per 8B chunk 2.5 cycles
L1 vector export cost 40 cycles
L2 buffers per chip 2
L2 buffer size 64kB
L2 vector export cost N/A

Table 2: Model parameters corresponding to the first

generation Micron D480 Automata Processor core archi-

tecture.

other, sibling buffer can be used simultaneously to im-
port report vectors). Currently, when an L1 buffer fills,
the AP must check every region for reports. If a re-
gion is empty, this check costs 2.5 cycles. Table 2 shows
the cycle costs of each of these operations reported by
Micron [23]. Table 3 shows the simulator configuration
parameters to match the Micron D480.

5.1.1 Report Vector Division
Because exporting large reporting vectors can be ex-

pensive, the Micron D480 allows report vectors in re-
porting regions to be statically reduced in size in the
case that all of the ports in the full region are not re-
quired. Dubbed Report Vector Division (RVD) [23],
this technique attempts to statically route reporting
states into consecutive reporting ports in an output re-
gion. If the reporting region can use 512, 256, 128, or 64
ports, rather than the available 1,024, the D480 can be

Simulator Configuration Default

Report Aggregators 6
Report Queues 6
RA/RQ width 1024 bits
Vector metadata size 64 bits
Queue Entries 481
Queue empty check cost 2.5 cycles
Queue export initiation cost 15 cycles
Bus cost per 8B chunk 2.5 cycles

Table 3: Spatial architecture simulator configuration

corresponding to the Micron D480 AP [23].

configured to export the divided, rather than the full,
vector. While alpha D480 hardware does not have this
feature enabled, we configure the simulator to evaluate
its performance impact.

5.2 Cycle-Accurate Simulation
The Micron D480 AP can be simulated using our pa-

rameterizable spatial architecture simulator, by setting
parameters to be as close as possible to real hardware.
Each reporting region can be simulated as a separate
RA. Because there are 3 reporting regions in each of 2
half-cores, we configure the simulator to have 6 RAs.
Reporting regions are 1,024 bits wide, and also include
a 64-bit metadata tag. Therefore, we set each RQ entry
to be 1,088 bits wide. The AP can transfer a report
vector per cycle to each corresponding L1 buffer, thus
we set the queue push throughput to be one packet per
cycle. Each L1 buffer can hold 1,024 132-byte vectors,
but cannot hold more than 64kB of data (the size of
the OEB). Thus, we set the number of entries in the
RQs to be 481 (64kB/1,088 bits). We also augment
the simulator to account for other dynamic costs such
as report export initialization costs, and buffer ”empty”
checks [23].

Because performance depends on both when and where
reports occur on chip, we use placement information
emitted by the Micron spatial compiler to better iden-
tify which RA input ports reporting states are assigned
to. We first place-and-route automata using Micron’s
compiler. We then extract placement information em-
bedded in this representation, and create a new hard-
ware accurate automata graph such that every state is
properly tagged with the coarse-grained AP hardware
region it was assigned by the compiler. In this way,
we can approximate which reporting regions reporting
states are assigned to, improving the accuracy of the
simulator.

Once states are assigned to input ports of the RAs, we
run the automata on an input using VASim and create a
report trace. This trace is then fed to the cycle-accurate
simulator for processing as described in Section 4.2. The
simulator processes the report vector, assigning cycle
costs based on the reports generated on any given cycle,
and the associated query, transfer, and stall costs. The
total number of cycles can then be multiplied by the
cycle time of the device to estimate total runtime.

5.3 Simulator Validation
We validate our cycle accurate simulation method-

ology against real hardware by comparing the actual
wall-clock runtimes of automata on alpha release D480
AP boards with runtimes generated by our spatial com-
piler. We first estimate driver overhead by running
the automata application with no input stimulus. This
measured time encompasses all CPU, PCIe, firmware,
and miscellaneous overheads associated with initiating
computation. Any runtime on top of this is due to au-
tomata processing and reporting overheads. This value
can then be subtracted from runtimes collected from
real hardware runs for comparison with simulation.

We consider a synthetic application to validate the

Figure 3: Normalized performance of alpha release AP

D480 hardware compared to performance predicted by

our trace-based, cycle accurate simulator. Predicted per-

formance matches real performance to within 2.3%-4.6%.

performance model. The synthetic application is made
up of automata that are both a start state and a report-
ing state, and matches on a single stimulus character.
Thus, any time a stimulus character appears in the in-
put stream, a report is generated for every state. The
size of this report vector, and the number of report re-
gions used can be controlled by adding or subtracting
additional automata.

We compile enough synthetic automata to occupy at
least one reporting port in every report region in both
AP half-cores. Because report vector division is not
enabled in alpha hardware, we guarantee full report
vectors will be exported from every output region re-
gion whenever a stimulus character is seen in the input
stream. We vary the frequency of stimulus characters
in the input by a constant amount and record the per-
formance of varying cycles per report or CpR. A lower
CpR means more frequent reports, higher pressure on
the reporting architecture, and a higher performance
penalty. We evaluate three different CpR values, two,
three, and four through 481 input symbols. Alpha D480
firmware currently does not currently support contigu-
ous inputs longer than 481 input symbols with high re-
porting rates. Larger inputs can still be supported by
breaking the stream into chunks, but this introduces
additional, unrelated overheads that we do not wish
to measure. We therefore leave verification on release
hardware over the entire ANMLZoo benchmark suite
to future work. Figure 3 shows normalized runtimes of
real AP hardware and runtimes predicted by our spa-
tial architecture simulator using the three different in-
put stimulus files. Predicted performance matches real
performance to within 2.3%-4.6%.

5.4 ANMLZoo Reporting Overheads
We use the simulation methodology described above

to simulate performance of ANMLZoo applications on
the Micron D480. Figure 4 shows the overhead associ-
ated with output reporting for all 12 non-synthetic AN-

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
t P

ro
ce

ss
in

g
O

ve
rh

ea
d

Simulated ANMLZoo Overhead on the Micron D480

Overhead Overhead with RVD

46x 24x

Figure 4: Simulated Micron D480 output processing

overhead for each non-synthetic application in the AN-

MLZoo benchmark suite.

MLZoo benchmarks [20]. Some benchmarks incur ex-
tremely large reporting overheads. For example, Snort
incurs a 46× slowdown over ideal performance, and
6 out of 12 benchmarks spend more time processing
reporting overheads than processing automata transi-
tions! Some benchmarks have little or not reporting
overheads. This is simply because these benchmarks
reports infrequently or not at all at all.

Report Vector Division (RVD) is simulated by count-
ing the report ports per region and configuring the re-
port vector to be the appropriate size. RVD makes
a large impact on performance when there are rela-
tively few reporting ports required, but frequent report-
ing. For example, RVD decreases reporting overhead
by approximately 50% for Snort, Brill, Protomata, ER,
Fermi, and RF.

While RVD does help improve performance, reporting
overhead is still extremely high for many benchmarks.
These high reporting overheads can cancel out much of
the benefit of spatial acceleration. The rest of this pa-
per attempts to understand what causes high reporting
overheads and propose solutions to mitigate them.

6. AUTOMATA TRANSFORMATIONS TO
REDUCE REPORTING OVERHEAD

Automata transformations are extremely important
for improving performance on von Neumann architec-
tures, and reducing capacity requirements on spatial
architectures [20]. Automata compression does not re-
quire any changes to hardware, and thus can easily be
implemented on existing systems. This section presents
an automata transformation to reduce the number of re-
quired reporting ports called “disjoint report merging”
or DRM.

6.1 Disjoint Report Merging
Because reporting ports are a scarce resource, and

generally increase report vector sparsity, it is desirable
to decrease the total number of required reporting ports.
Reporting ports can be reduced by having multiple states
share a single port. However, when states share a port,
multiple reports on the same cycle might be masked

as a single report, or we might not be able to discern
which state generated the report. Thus, it is only safe
to share a reporting port if a set of reporting states
provably never use the port on the same cycle. This is
possible if the character sets of the reporting elements
have no characters in common (disjoint), and thus can
never match on the same cycle. We propose to merge
the ports of reporting states with disjoint character sets
to reduce the output port requirements. We call this
technique “Disjoint Report Merging” or DRM.

DRM identifies sets of reporting states with disjoint
character sets that provably cannot match on the same
input. DRM then assigns all members of a set to the
same reporting port. Unioned reports cause ambiguity
when they occur (i.e. we do not know which original
state reported). However, because their character sets
are disjoint, it is trivial to disambiguate which reporting
state was responsible for the report by examining the
symbol that caused the report on the host system.

As an example, if reporting state (1) has character
set [a] and reporting state (2) has character set [b], a
report from their union (1 or 2) may represent (1) or
(2). However, the character sets in (1) and (2) are dis-
joint and we can therefore recover the original reporting
state by examining the triggering input symbol. In the
example above, if the symbol that caused the unioned
report (1,2) to match was b, the report came from (2).

By reducing the number of required reporting ports,
we reduce RA input port requirements, and may in-
duce report vector division (described in Section 5.1.1)
possibly reducing reporting overheads.

input : set R of reporting state state objects
input : function Children returns output connections

from given state
input : function Matches returns char set of

matching input stimuli for an STE state
output: mapping from reporting port to set of

merged reporting state objects

1 mapping ports;
2 foreach state r ∈ R do
3 if |Children(r)| > 0 then
4 continue
5 end
6 port sink;
7 ports(sink)← {r};
8 R← R \ {r};
9 char set match←Matches(r);

10 foreach state r′ ∈ R do
11 if |Children(r′)| > 0 then
12 continue
13 end
14 if match ∩Matches(r′) == ∅ then
15 ports(sink)← ports(sink) ∪ {r′};
16 R← R \ {r′};
17 end
18 end
19 end
20 return ports

Algorithm 2: Disjoint Report Merging

6.2 DRM Algorithm
Pseudocode for identifying disjoint character sets in

reporting states is provided in Algorithm 2. We imple-
ment DRM as a VASim pass over the reporting states

in each ANMLZoo benchmark. DRM is accomplished
by examining reporting states and grouping states that
have disjoint character sets.

Because routing a large number of outputs from merged
states to a single reporting port might create congestion
in the reconfigurable routing matrix, we only consider
merging reporting states that have no outgoing connec-
tions. We also restrict DRM to merge disjoint reporting
state ports in the same connected component subgraph.
These restrictions make it more likely that only states
that are close together in the architecture will be merged
and not increase reconfigurable fabric resource require-
ments, and a more realistic measure of potential benefit.

6.3 DRM Potential Study
We apply the DRM algorithm described above to ev-

ery automata benchmark in the ANMLZoo benchmark
suite [20], and compare the original number of required
reporting ports to the final number after DRM to iden-
tify how much opportunity for report port compression
exists. Table 4 shows the original and compressed num-
ber of reporting states.

Benchmark Orig. Comp. Factor Speedup

Snort 1,955 1,364 30.2% 40.4%
Dotstar 1,290 343 73.4% 0%
ClamAV 515 164 67.9% 0%
PowerEN 2,920 1,054 63.9% 2.6%

Brill 1,886 1,886 0% NA
Protomata 2,338 2,338 0% NA
Hamming 279 156 44.0% 0%

Levenshtein 178 84 52.8% 0%
ER 1,406 1,406 0% NA

SPM 5,025 5,025 0% NA
Fermi 2,399 1,030 57.1% 26.2%

RF 1,661 1,661 0% NA

Table 4: Number of required reporting ports in the

compiled ANMLZoo benchmarks before and after dis-

joint report merging. Some applications cannot be com-

pressed using this technique. Speedup measured perfor-

mance improvement due to DRM when compared to the

simulated Micron D480 with RVD enabled.

The reporting ports of many benchmarks can be com-
pressed by large amounts. For instance, reporting ports
in 5 out of 12 of the applications can be compressed by
more than 50%. 73% of Dotstar’s reporting ports can be
compressed from 1, 290 to just 343. However, reporting
ports in 5 out of 12 applications cannot be compressed
using DRM at all. For example, Brill has 1, 886 re-
porting states, but each has an identical character set,
and are thus are never disjoint. Brill can be report-
compressed if the algorithm considers the second-to-last
level of matching states, and disambiguates reports us-
ing a symbol lookup into the second to last symbol that
caused a report. Ideally, DRM merges the ports of au-
tomata with identical suffixes until it encounters parent
states with disjoint character sets. We leave develop-
ment of this algorithm for future work.

6.4 DRM Performance Impact
We simulate the performance of each ANMLZoo bench-

mark using ANMLZoo’s 1MB input files before and af-
ter DRM is applied. The simulator first re-maps out-

puts from disjoint sets to a single report vector port in
the architecture. RVD is then applied. DRM only in-
creases system performance if it induces RVD. The last
column in Table 4 shows the simulated speedup of the
DRM version of the automata over the original appli-
cation with RVD enabled.

While many applications are compressible, if reports
are infrequent, or if RVD is not induced, there is no per-
formance benefit for DRM. However some applications
benefit greatly from DRM. Snort’s end-to-end perfor-
mance was improved by ∼ 40.8%, reflecting a ∼ 42%
reduction in report processing overhead. Fermi’s end-
to-end performance was improved by ∼ 26%, reflecting
a ∼ 57% reduction in in report processing overhead.

7. IDENTIFYING ARCHITECTURAL
BOTTLENECKS IN REPORTING

While DRM can reduce output port requirements and
induce report vector division, DRM is not a general
technique, and does not help decrease reporting over-
heads for most of the ANMLZoo benchmarks. For ex-
ample, DRM cannot be applied to the SPM benchmark,
which has a reporting overhead of ∼ 8x. Snort, which
enjoys the largest benefit from DRM, still has a report-
ing overhead of ∼ 13x. The following sections first char-
acterize the reporting bottleneck in the Micron D480
architecture. We identify that a large percentage of
reporting bottlenecks are caused by extremely sparse
reporting vectors and explore a new reporting architec-
ture design that reduce the sparsity of these vectors.

7.1 Characterizing Report Vector Sparsity
Report Aggregators (RAs) are configured to export

reporting events as bit vectors where set bits correspond
to states that reported on that particular cycle. When-
ever a report occurs, a sparse vector is generated and
pushed to the corresponding Report Queues (RQ). Be-
cause each report vector is tagged with 64-bits of meta-
data, wider RAs can amortize the cost of this metadata
over a larger number of reports. However, if there are
few reports per report cycle, RAs that are too wide in-
troduce large levels of sparsity, and can clog the Output
Data Bus with a large amount of unnecessary data.

Section 3 identified that there were usually between
1-7 reports per cycle, and very rarely a large number.
Thus, we hypothesize that RAs that are 1,024 bits wide
introduce a large amount of sparsity. We measure the
density of each reporting vector by recording the ratio
of 1’s in a report vector to total bits, not counting the
metadata. A larger density (lower sparsity) means that
more meaningful data is being recorded. Results are
shown in Figure 5.

In general, density is extremely low. Most applica-
tions, even with RVD applied, do not use more than
0.5% of the available vector space. SPM is an obvious
outlier as its average density is 22.7%. For each report-
ing cycle, SPM must account for an average of ∼ 1, 394
reports, where the rest of ANMLZoo averages between
1 and 7. While the common case is sparse reporting, it
is also important to make sure we do not hurt perfor-

0.0%

0.5%

1.0%

1.5%

2.0%
Pe

rc
en

ta
ge

 o
f '

1'
s

in
 E

ac
h

R
ep

or
t V

ec
to

r
Report Vector Density

Report Vector Density w/ RVD

22.7%

Figure 5: Report vector density (ratio of ’1’s to total

bits) for all applications in ANMLZoo. Most applica-

tions have extremely sparse reporting vectors. Report

Vector Division (RVD) statically re-sizes report vectors

to reduce vector sparsity known at compile time.

mance of applications with denser reporting.
Report Vector Division more than doubles report vec-

tor density in all applications but SPM. This is because
RVD is able to statically reduce RA size, removing ports
that provably will always be ’0’s.

Because our spatial automata processing system must
pay a cycle penalty for every exported bit, this sparsity
is a huge source of inefficiency. The next section ex-
plores modifications to the spatial architecture model to
reduce this sparsity, and decrease reporting overheads.

7.2 Reducing Output Sparsity
The previous section showed that report vectors, even

when statically divided using RVD, were extremely sparse,
causing large and unnecessary overheads. To solve this
problem, we modify the architecture, splitting RAs into
finer grained structures or sub-RAs. These finer grained
structures can be configured to push smaller packets to
the output queue when reporting is sparse, or be chain-
ganged together into sub-groups to push larger packets
when reporting is dense. We call this technique Report
Aggregator Division (RAD). Similar to RVD described
in Section 5.1.1, RAD generates smaller packets, reduc-
ing the sparsity of output. However, unlike RVD, RAD
does not require the automata to use a small number
of report ports and can support very large numbers of
ports without paying a penalty for sparse output.

7.2.1 Report Aggregator Division
We implement RAD by dividing each 1,024-bit wide

RA into 64, 16-bit-wide sub-RAs. Each sub-RA is stat-
ically responsible for 16 reports from the automata fab-
ric. When reports occur in the automata fabric, sub-
RAs generate small, 16-bit report packets. Sub-RAs can
be chain-ganged together into equal-sized sub-groups to
generate larger packets if reporting is dense.

To keep track of when and where reports are gener-
ated in an RA/RQ pair, we add a metadata genera-
tor block (MGB). The MGB is responsible for tagging
data packets generated by sub-RAs with the symbol

Figure 6: Spatial Reporting Architecture with report

aggregation split into sub-modules. The Metadata Gen-

erator Block tags report packets with RAD configuration

information, the sub-RA ID where the packet was gener-

ated in this configuration, and the cycle index the packet

was generated. The Arbitration Unit combines and arbi-

trates packets from sub-RAs to be pushed to the report

queue.

cycle that generated the packet, the ID of the sub-RA
that generated the packet, and the RAD configuration
(the size of the sub-groups) of the RA. Each metadata
tag is 64-bits and consists of a 32-bit field to hold the
index of the cycle that generated the packet, a 16-bit
field to hold the ID of the sub-RA that generated the
packet, and a 16-bit field to identify how many sequen-
tial sub-RAs are currently chain-ganged together into
a sub-group. In order to support the possibility that
more than one sub-RA or group of sub-RAs generates a
packet on a given cycle, we add a hardware structure to
control how packets are pushed to the RQ called the ar-
bitration unit (AU). The AU multiplexes packets from
sub-RA groups and pushes them to the RQ. If more
than one packet is generated by a sub-RA group on
the same cycle, the AU stalls automata processing and
pushes each packet to the RQ until automata processing
can resume. Sub-RA groups are configured by setting
appropriate configuration bits in the MGB and AU.

Because RAD configuration for each RA/RQ pair is
carried via the metadata packet, the number of sub-
RAs chain-ganged together in a sub-group can be con-
figured at any time by stalling processing and re-setting
the appropriate bits in the MGB and AU. RAD recon-
figuration is designed to be light-weight, and does not
require a recompilation or a separate place-and-route
step. The augmented system supporting RAD is shown
in Figure 6.

7.2.2 Sensitivity Analysis
We explore the potential benefits of RAD by adding

RAD capabilities to the spatial architecture simulator
and simulating system performance on the Snort and
SPM ANMLZoo benchmarks.

We increase the RAD division factor from 1 (64 sub-
RAs chain-ganged together) to 64 (16 input ports for
each of 64 independent sub-RAs) and measure reporting
overheads. Every other parameter in the simulator is set
to the default Micron D480 setting. Results are shown
in Figure 7.

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

45

50

RAD Division Factor

Sl
ow

do
w

n
D

ue
 to

 R
ep

or
tin

g
O

ve
rh

ea
ds

Snort and SPM Performance When Varying RAD Factor

Snort SPM

Figure 7: Reporting overheads as a function of increas-

ing RAD factor for Snort and SPM. Snort has sparse

reporting behavior, and thus benefits from smaller pack-

ets. SPM has dense reporting behavior, and benefits

from larger packets.

A RAD factor of 1 represents the original configura-
tion of the Micron D480 AP. Because Snort reports are
frequent and sparse (low IoD), Snort benefits greatly
from a high RAD factor. A RAD factor of 64 (64 sub-
RAs with 16-bit packets) reduces reporting overheads to
3.8x versus 46.3x when the RAD factor is 1 and config-
ured to match the Micron D480 AP. On the other hand,
because SPM’s reports are infrequent and dense (high
IoD), SPM shows better performance from a low RAD
factor, and performs best when RAD is configured to
match the Micron D480 AP. This result highlights the
benefits of a flexible reporting architecture: the RAD
architecture allows us to tune the RAD factor to best
match the reporting behavior of an application.

7.2.3 Results
We simulate all ANMLZoo benchmarks using the orig-

inal architecture with RVD enabled, and compare the
results to our RAD-enabled architecture with the high-
est performing RAD factor. This corresponds to 64 for
all benchmarks but SPM, which does not benefit from
RAD. Results are shown in Figure 8.

When compared to RVD, RAD is able to reduce re-
porting overheads by 66% to 84% for applications with
sparse reporting behavior. Unlike RVD, RAD is able
to reduce sparsity while also allowing a large number of
input ports.

For benchmarks with large reporting overheads, RAD
greatly improves performance in almost all cases. For
example, RAD improves the performance of Snort, which
had a 24x reporting overhead with RVD enabled, by
5.1x.

When reporting is dense, such as in SPM, RAD has
no positive benefit. However, importantly, RAD does
not hurt performance, as it is configurable to account
for dense reporting behavior.

While these results are impressive, other techniques
can be employed to further reduce overheads. Future

Figure 8: Speedups and reduction in reporting over-

head due to RAD. SPM did not benefit from RAD be-

cause it generates dense reporting vectors.

work will investigate the cost of implementation of the
most promising solutions discovered by our spatial ar-
chitecture simulator.

8. DISCUSSION AND FUTURE WORK
This paper motivates automata reporting as a criti-

cal bottleneck in practical automata processing archi-
tecture design. We first characterized automata report-
ing to identify common-case behavior and showed that
reporting behavior for most benchmarks is sparse, but
can be dense. We then show that architectures that
over-design for dense reporting perform poorly for ap-
plications with sparse reporting. We then present a con-
figurable reporting architecture that is able to efficiently
handle common-case, sparse behavior better than exist-
ing systems, while also not hurting performance when
reporting is dense.

Could different inputs hurt performance of a
RAD configuration? Inputs that differ from the char-
acterization inputs might cause different reporting be-
havior, and might hurt performance of a chosen RAD
configuration. Because reporting behavior can be di-
verse, we designed the RAD reporting architecture to
be configurable to account for such changes in behavior.
If average case behavior is not captured by the profiling
inputs, and reporting overhead is high, the architecture
can be quickly reconfigured with a new RAD factor by
updating the settings of the MGB unit in all, or some
of the RA/RQ pairs. In future work, more applications
and more inputs could be used to generate more com-
plete application characterizations that may motivate
improvements to this architecture. Future work could
also monitor reporting behavior at runtime to guide dy-
namic reconfiguration of the RAD architectures, in or-
der to respond to variations in reporting behavior.

Could compression circuits further reduce spar-
sity? Yes. Future work could explore the trade-off
space in compression circuit area and power costs ver-
sus performance. Careful attention should be paid such
that frequent or dense reporting does not overwhelm
these compression circuits. Application specific com-
pression schemes are an extremely promising path for
future work. Architects could build in certain popular

compression kernels such as report counting and thresh-
olding [14], or classed report voting [16, 22].

Why is there still a gap between the potential
and achieved speedups? While RAD enables much
more efficient reporting for benchmarks with sparse but
frequent reporting, the architecture still must stall for
every reporting event. Completely eliminating these
stalls might be accomplished by double buffering the
report queues so that reports from one queue could be
exported off-chip while the automata continues to run
and pushes report packets to a second sibling queue.
We leave evaluation of the impacts of double buffering,
as well as other techniques to reduce reporting overhead
to zero, as future work.

Could report signal to RA routing cause con-
gestion in the reconfigurable routing matrix? Yes.
All spatial architectures must somehow route report-
ing signals to ports in an RA or similar structure, and
these signals might cause congestion in the reconfig-
urable routing matrix. DRM might exacerbate routing
congestion by wiring many input signals from automata
states placed far away to the same reporting port. Our
DRM algorithm attempts to minimize this potential im-
pact by only grouping states with no other output sig-
nals, and within the same a connected component. The
RAD architecture operates independently of the routing
fabric, and does not affect routing constraints.

Do results extend to other spatial architec-
tures? The lessons of this paper not only apply to
current spatial automata processor architectures like
the D480, but also motivate designs of reporting archi-
tectures for FPGA-based automata processing engines,
and reporting architectures for next generation spatial
automata processing ASICs. Most prior work in spatial
automata processing overlooked reporting architecture
design and performance impact. Our work shows that
reporting cannot be ignored when considering a wide
variety of real-world applications, and should be care-
fully designed to consider a wide variety of reporting
behavior.

9. CONCLUSIONS
Spatial automata processing architectures offer an ex-

citing acceleration opportunity for the widening array of
automata-based applications. However, because of their
massively parallel nature, spatial architectures can suf-
fer from output reporting constraints. This paper first
characterizes reporting behavior of automata applica-
tions. To the best of our knowledge, this paper is the
first to characterize reporting behavior over a large set
of diverse automata benchmarks. We identify that re-
porting can be frequent, but is usually sparse in nature.

To identify performance impacts of reporting, we de-
sign a parameterizable spatial automata processing sim-
ulator. This simulator can be configured to behave like
a wide range of real and hypothetical spatial automata
processing systems. The simulator uses report traces
generated by offline automata processing, and measures
the costs associated with exporting these reports off
chip. We use this spatial automata processing simu-

lator to measure the overhead due to reporting in a
commercial spatial automata processing architecture–
Micron’s D480 Automata Processor. Reporting over-
heads for many applications are extremely large. For
example, Snort has a projected reporting overhead of
∼ 46x, and 6 out of 12 applications spend more time
exporting reports than processing automata symbols.

We explore two novel methods to reduce reporting
overheads in spatial architecture systems. One software
only method, and one hardware architecture modifica-
tion. The software method transforms the automata,
merging reporting outputs that can provably be dis-
ambiguated after computation. The hardware method
modularizes report aggregation units so that they can
be divided into finer-grained, independent structures.
We show that modularizing report aggregators can re-
duce reporting overheads by up to 84% and increase
performance by up to 5.1x.

10. ACKNOWLEDGEMENTS
We would like to thank the reviewers for their valu-

able feedback. This work was partly funded by C-FAR,
one of six centers of STARnet, a Semiconductor Re-
search Corporation program sponsored by MARCO and
DARPA, Achievement Rewards for College Scientists
(ARCS), and NSF grant no. CCF-1629450.

11. REFERENCES
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of
the parallel computing landscape,” Commun. ACM, vol. 52,
pp. 56–67, Oct. 2009.

[2] M. Roesch, “Snort: Lightweight intrusion detection for
networks.,” in Proceedings of the USENIX Large
Installation Systems Administration Conference (LISA),
1999.

[3] ClamAV, “ClamAV Rules.” Available at
https://www.clamav.net/.

[4] Computer Sciences Corporation, “Big data universe
beginning to explode.”
http://www.csc.com/insights/flxwd/78931-
big_data_universe_beginning_to_explode, 2012.

[5] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron,
“Brill Tagging on the Micron Automata Processor,” in
Proceedings of the IEEE International Conference on
Semantic Computing (ICSC), pp. 236–239, 2015.

[6] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru,
“High Performance Pattern Matching Using the Automata
Processor,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp. 1123–1132, 2016.

[7] I. Roy, N. Jammula, and S. Aluru, “Algorithmic Techniques
for Solving Graph Problems on the Automata Processor,”
in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 283–292,
May 2016.

[8] M. H. Wang, G. Cancelo, C. Green, D. Guo, K. Wang, and
T. Zmuda, “Using the Automata Processor for fast pattern
recognition in high energy physics experiments—a proof of
concept,” Nuclear Instruments and Methods in Physics
Research, 2016.

[9] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy,
G. Robins, M. Stan, and K. Skadron, “Generating efficient
and high-quality pseudo-random behavior on Automata
Processors,” in Proceedings of the 2016 IEEE 34th

International Conference on Computer Design (ICCD),
pp. 622–629, Oct 2016.

[10] I. Roy and S. Aluru, “Finding Motifs in Biological
Sequences Using the Micron Automata Processor,” in
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 415–424,
2014.

[11] I. Roy, Algorithmic Techniques for the Micron Automata
Processor. PhD thesis, Georgia Institute of Technology,
2015.

[12] T. Tracy II, M. Stan, N. Brunelle, J. Wadden, K. Wang,
K. Skadron, and G. Robins, “Nondeterministic finite
automata in hardware—the case of the Levenshtein
automaton,” Proceedings of Architectures and Systems for
Big Data (ASBD), in conjunction with ISCA, 2015.

[13] K. Wang, Y. Qi, J. J. Fox, M. Stan, and K. Skadron,
“Association rule mining with the Micron Automata
Processor,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp. 689–699, 2015.

[14] K. Wang, E. Sadredini, and K. Skadron, “Sequential
Pattern Mining with the Micron Automata Processor,” in
Proceedings of the ACM International Conference on
Computing Frontiers (CF), 2016.

[15] E. Sadredini, R. Rahimi, K. Wang, and K. Skadron,
“Frequent Subtree Mining on the Automata Processor:
Challenges and Opportunities,” in Proceedings of the
International Conference on Supercomputing (ICS), (New
York, NY, USA), ACM, 2017.

[16] T. Tracy II, Y. Fu, I. Roy, E. Jonas, and P. Glendenning,
“Towards machine learning on the automata processor,” in
Proceedings of the International Conference on High
Performance Computing, Springer, 2016.

[17] M. Putic and M. Stan, “Dendroplex: Synthesis, Simulation,
and Validation of Hierarchical Temporal Memory on the
Automata Processor,” in Proceedings of the Design
Automation Conference (DAC), 2017.

[18] Intel, “Hyperscan.” https://github.com/01org/hyperscan.

[19] Google, “Re2.” https://github.com/google/re2.

[20] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo,
E. Sadredini, K. Wang, C. Bo, G. Robins, M. Stan, and
K. Skadron, “ANMLZoo: A Benchmark Suite for Exploring
Bottlenecks in Automata Processing Engines and
Architectures,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), 2017.

[21] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt:
NFA Pattern Matching on GPGPU Devices,” SIGCOMM
Computer Communication Review, vol. 40, no. 5,
pp. 20–26, 2010.

[22] T. Xie, V. Dang, C. Bo, J. Wadden, K. Skadron, and
M. Stan, “REAPR: Reconfigurable Engine for Automata
Processing,” in Proceedings of the International Conference
on Field Programmable Logic (FPL) to appear, IEEE, 2017.

[23] Micron Inc., “Designing for the Micron D480 Automata
Processor.”
http://www.micronautomata.com/documentation/anml_
documentation/c_D480_design_notes.html.

[24] J. Wadden and K. Skadron, “VASim: An Open Virtual
Automata Simulator for Automata Processing Application
and Architecture Research,” Tech. Rep. CS2016-03,
University of Virginia, 2016.

[25] R. Sidhu and V. K. Prasanna, “Fast Regular Expression
Matching Using FPGAs,” in Proceedings of the the 9th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), (Washington, DC, USA),
pp. 227–238, IEEE Computer Society, 2001.

[26] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact
Architecture for High-throughput Regular Expression
Matching on FPGA,” in Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS), (New York, NY, USA),
pp. 30–39, ACM, 2008.

[27] M. Becchi, C. Wiseman, and P. Crowley, “Evaluating
regular expression matching engines on network and
general purpose processors,” in Proceedings of the
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pp. 30–39, 2009.

[28] X. Wang, “Techniques for efficient regular expression
matching across hardware architectures,” Master’s thesis,
University of Missouri-Columbia, 2014.

[29] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “An efficient and scalable semiconductor
architecture for parallel automata processing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 12, pp. 3088–3098, 2014.

[30] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “Supplementary material for an efficient and
scalable semiconductor architecture for parallel automata
processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, 2014.

[31] C. Bo, K. Wang, J. J. Fox, and K. Skadron, “Entity
Resolution Acceleration using Micron’s Automata
Processor,” Proceedings of Architectures and Systems for
Big Data (ASBD), in conjunction with ISCA, 2015.

[32] “Micron Automata Processor SDK.”
http://micronautomata.com/.

