[Functional] Programming Exercises
CS 364 — Fall 2024

1 Definitions and Background
1. Define the following terms and give examples where appropriate.

(a) binding:

(b) lambda expression:

(c) variant type:

(d) first class function:

(e) higher-order function:

(f) closure:

(g) referential transparency:

2. What are some differences between programming languages? Provide several concrete examples.

3. Briefly describe Imperative, Object-Oriented, Functional, and Declarative programming paradigms. What some
typical characteristics of each?

2 Recursion

1. What is tail recursion? Why is it desirable?

2. Rewrite the following function such that it is tail-recursive.

let rec fib = (n:int) : int => {
if(n<o){
failwith("negative_input_is_.not_allowed");
} else {
if(n==20 || n==1)¢{
‘I .

} else {
fib(n -1) + fib(n - 2);
3
}
3

3. Write a recursive function called power that inputs two non-negative integers x and y and outputs x¥ using
multiplication.

let power = ((x:int), (y:int)) : int =>

3 Function Evaluation
Evaluate the following expressions, showing several steps on the way to the final value.

1. ((x, y) = abs(x—vy))(4, 8);

2. List.filter (x = { x mod 2 =0 },
List.map (x = { x+3}, [1, 2, 4, 5,6, 10]));

3. let rec fold = ((f : ('b, "a) = 'b), (acc : 'b), (Ist : list('a))) : 'b = {
switch(Ist) {
| [] = acc
| [hd, ...tl] = fold(f, f(acc, hd), tl)

b
b
fold ((pred, a) = { pred || a>5 }, false, [0, 3, 2, =1, 6]);

4 Higher-Order Functions

Consider the following function definition for fold2, which folds over two, equal-length lists:

let rec fold2 = ((f: (’a, ’b, ’c) => ’a), (acc:’a), (l1:1list(’b)), (l2:1list(’c))) : ’'a => {
switch((11, 12)) {
| ([1,0[1) => acc
| (Chd1, ...tl11], [hd2, ...tl2]) => fold2(f, f(acc, hdl, hd2), tl1, tl2)
| _ => failwith("lists_have_different_lengths")
3
};
This function can be used to implement other higher-order functions. Demonstrate this ability by implementing the
following functions using fold2.

1. /%
* Given f, [al, ..., anl, [b1, ..., bnl
* return [f(al, b1), ..., f(Can, bn)]
*/

let map2 = ((f: (’a, ’b) => ’c), (1l1: list(’a)), (1l2: list(’b))) : list(’c) =>

2. /%

* Given f, [al, ..., an]l, [b1, ..., bn]
* return true if f(ai, bi) returns true for all 1 <= i <=n
*x/

let for_all2 = ((f: ’a => ’b => bool), (l1: list(’a)), (1l2: list(’b))) : bool =>

