
Lexing, RegEx, Automata Exercises
CS 364 — Fall 2024

These review exercises asks you to prepare answers to questions on regular languages and finite automata. Each of the
questions has a short answer. You may discuss these exercises with other students and work on the problems together.

1 Definitions and Background

1. Define the following terms and give examples where appropriate.

(a) lexeme:

(b) token:

(c) alphabet:

(d) language over an alphabet:

(e) regular language:

(f) maximal munch rule:

(g) lexical analyzer generator:

(h) deterministic finite automaton:

(i) nondeterministic finite automaton:

(j) finite automaton acceptance:

1



2. What are the stages of an interpreter? What data types are passed between these stages?

3. What differences are there between a compiler and an interpreter?

2



2 Regular Languages and Regular Expressions

1. Write a regular expression to match each of the following.

• An RGB color: three comma-separated integers enclosed in parentheses

• A Java variable name: a sequence of lowercase letters, upper case letters, numbers and underscores that does
not begin with a number.

2. How can a character class be represented using only single match (a), empty match (ε), concatenation (AB), union
(A|B), and Kleene star (A*)?

3. Determine whether or not the following languages are regular. Explain why in one or two sentences.

• L1 is all strings over the alphabet {(, )} where the parentheses are balanced. For example, (()(())) ∈ L1 but
(() /∈ L1.

• L2 is all unique words that are printed in Programming Language Pragmatics by Michael L. Scott.

• L3 is all 10-digit numbers that are prime.

• L4 is the Reason language (as described in its reference manual). The alphabet is the set of all tokens and
the language is the set of all valid Reason programs. Hint: Your answer should not be YES. can you think of
two reasons why? Aside: This explains why we cannot use a lexer to parse languages like snail or Python
or C.

3



4. Consider the following DFA over the alphabet Σ = {a, b}.

qastart qb qc qdb b b

a a a a

b

Give a one-sentence description of the language recognized by the DFA. Write a regular expression for the same
language.

3 Finite Automata

1. Consider the following languages over the alphabet Σ = {a, b}.

• L1 : All strings that contain at least three a’s.

• L2 : All strings that contain at most one b.

• L3 : All strings that contain at least three a’s but at most one b.

• L4 : All strings that contain no b’s.

Aside: This example illustrates that regular languages are closed under intersection. Note that L3 = L1 ∩ L2.

(a) For each of the languages L1, L2, L3 and L4, give a regular expression.

4



(b) For each of the languages L1, L2, L3 and L4, give a nondeterministic finite automaton (NFA). (You should
thus give four separate NFAs.)

5



(c) For each of the languages L1, L2, L3 and L4, give a deterministic finite automaton (DFA). (You should thus
give four separate DFAs.)

6



2. Consider the following languages:

• L1 is all strings over the alphabet Σ = {x, y} where either x occurs an odd number of times or y occurs an
odd number of times (or both).

• L2 is all strings over the alphabet Σ = {x, y, z} where either x occurs an odd number of times or y occurs
an odd number of times or z occurs an odd number of times (or both, or all three).

Give a non-deterministic finite automaton (NFA) for the the languages L1. Then give a separate NFA for L2.

Aside: Non-deterministic finite automata are no more powerful than DFAs in terms of the languages they can
describe. They can be exponentially more succinct than DFAs, however.

7


