
13Concurrency

13.5 Message Passing

While shared-memory concurrent programming is common on small-scale mul-
ticore and multiprocessor machines, most programs that run on clusters, super-
computers, or geographically distributed machines are currently based on mes-
sages. In Sections C 13.5.1 through C 13.5.3 we consider three principal issues in
message-based computing: naming, sending, and receiving. In Section C 13.5.4
we look more closely at one particular combination of send and receive seman-
tics, namely remote procedure call. Most of our examples will be drawn from the
Ada, Erlang, and Go programming languages, the Java network library, and the
MPI library package.

13.5.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, orEXAMPLE 13.53
Naming processes, ports,
and entries

where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure C 13.21. !

The first naming option—addressing messages to processes—appears in
Hoare’s original CSP (Communicating Sequential Processes) [Hoa78], an in-
fluential proposal for simple communication mechanisms. It also appears in
Erlang and in MPI. Each MPI process has a unique id (an integer), and each
send or receive operation specifies the id of the communication partner. MPI
implementations are required to be reentrant; a process can safely be divided into
multiple threads, each of which can send or receive messages on the process’s
behalf.

The second naming option—addressing messages to ports—appears in Ada.
An Ada entry call of the form t.foo(args) sends a message to the entry namedEXAMPLE 13.54

entry calls in Ada foo in task (thread) t (t may be either a task name or the name of a variable
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(a)

(b) (c)

Figure 13.21 Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may be
called an entry or an operation. The receiver is typically a module with one or more threads
inside. In (c), senders and receivers both name an independent channel abstraction, which may
be called a connection or a mailbox.

whose value is a pointer to a task). As we saw in Section 13.2.3, an Ada task
resembles a module; its entries resemble subroutine headers nested directly inside
the task. A task receives a message that has been sent to one of its entries by
executing an accept statement (to be discussed in Section C 13.5.3). Every entry
belongs to exactly one task; all messages sent to the same entry must be received
by that one task. !

The third naming option—addressing messages to channels—appears in GoEXAMPLE 13.55
Channels in Go and Occam. (Though their concurrency features are loosely based on CSP, both

Go and Occam differ from Hoare’s proposal in several concrete ways, including
the use of channels.) Channel declarations in Go are supported with the chan
type constructor:

var c1 chan int

This code declares c1 to be an (initially nil) reference to a channel. A channel
value can be created with the built-in function make:

c1 = make(chan int)

Typically the declaration and initialization appear together:

var c1 = make(chan int)

Here Go infers the type of c1 from the initialization expression.
To send a message on a channel, a thread uses the binary “arrow” operator <-

with a channel variable on the left and a message on the right:

c1 <- 3
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To receive, it uses <- as a unary operator, with the channel on the right:

my_int = <-c1

To indicate that no further messages will be forthcoming, a thread can close a
channel. A receiving thread can check for this possibility by assigning a receive
expression into a pair, the second element of which is a Boolean:

my_int, ok = <-c1
if (ok) {

// use my_int ... !

For the common idiom in which a server thread is willing to accept requestsEXAMPLE 13.56
Remote invocation in Go from any of many possible client threads, each request message can include a

reference to the channel on which to send a response:

type request struct {
name string
reply_to chan string

}
...
// Assume a server thread is listening on chan 'service'
...
var c = make(chan string, 1) // create channel for response
service <- request{"Alice", c} // send look-up request for Alice
println(<-c) // receive response on c !

Internet Messaging

Java’s standard java.net library provides two styles of message passing, corre-
sponding to the UDP and TCP Internet protocols. UDP is the simpler of the
two. It is a datagram protocol, meaning that each message is sent to its destina-
tion independently and unreliably. The network software will attempt to deliver
it, but makes no guarantees. Moreover two messages sent to the same destina-
tion (assuming they both arrive) may arrive in either order. UDP messages use
port-based naming (Figure C 13.21b): each message is sent to a specific Internet
address and port number.1 The TCP protocol also uses port-based naming, but
only for the purpose of establishing connections (Figure C 13.21c), which it then
uses for all subsequent communication. Connections deliver messages reliably
and in order.

1 Every publicly visible machine on the Internet has its own unique address. Though a transition
to 128-bit addresses has been underway for some time, as of 2008 most addresses are still 32-
bit integers, usually printed as four period-separated fields (e.g., 192.5.54.209). Internet name
servers translate symbolic names (e.g., gate.cs.rochester.edu) into numeric addresses. Port
numbers are also integers, but are local to a given Internet address. Ports 1024 through 4999 are
generally available for application programs; larger and smaller numbers are reserved for servers.
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To send or receive UDP messages, a Java thread must create a datagram socket:EXAMPLE 13.57
Datagram messages in Java

DatagramSocket my_socket = new DatagramSocket(port_id);

The parameter of the DatagramSocket constructor is optional; if it is not speci-
fied, the operating system will choose an available port. Typically servers specify
a port and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket my_msg = new DatagramPacket(buf, len, addr, port);
... // initialize message
my_socket.send(my_msg);

The parameters to the DatagramPacket constructor specify an array of bytes
buf, its length len, and the Internet address and port of the receiver. Receiv-
ing is symmetric:

my_socket.receive(my_msg);
... // parse content of my_msg !

For TCP communication, a server typically “listens” on a port to which clientsEXAMPLE 13.58
Connection-based
messages in Java

send requests to establish a connection:

ServerSocket my_server_socket = new ServerSocket(port_id);
Socket client_connection = my_server_socket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket server_connection = new Socket(host_name, port_id);

Once a connection has been created, a client and server in Java typically call meth-
ods of the Socket class to create input and output streams, which support all of
the standard Java mechanisms for text I/O (Section C 8.7.3):

BufferedReader in = new BufferedReader(
new InputStreamReader(client_connection.getInputStream()));

PrintStream out =
new PrintStream(client_connection.getOutputStream());

// This is in the server; the client would make streams out
// of server_connection.
...
String s = in.readLine();
out.println("Hi, Mom\n");
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!
Among all the message-passing mechanisms we have considered, datagrams

are the only one that does not provide some sort of ordering constraint. In gen-
eral, most message-passing systems guarantee that messages sent over the same
“communication path” arrive in order. When naming processes explicitly, a path
links a single sender to a single receiver. All messages from that sender to that re-
ceiver arrive in the order sent. When naming ports, a path links an arbitrary num-
ber of senders to a single receiver. Messages that arrive at a port in a given order
will be seen by receivers in that order. Note, however, that while messages from
the same sender will arrive at a port in order, messages from different senders may
arrive in arbitrary orders.2 When naming channels, a path links all the senders
that can use the channel to all the receivers that can use it. A Java TCP connection
has a single OS process at each end, but there may be many threads inside, each
of which can use its process’s end of the connection. The connection functions
as a queue: send (enqueue) and receive (dequeue) operations are ordered, so that
everything is received in the order it was sent.

13.5.2 Sending

One of the most important issues to be addressed when designing a send oper-
ation is the extent to which it may block the caller: once a thread has initiated a
send operation, when is it allowed to continue execution? Blocking can serve at
least three purposes:

Resource management: A sending thread should not modify outgoing data un-
til the underlying system has copied the old values to a safe location. Most
systems block the sender until a point at which it can safely modify its data,
without danger of corrupting the outgoing message.

Failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

Return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

2 Suppose, for example, that process A sends a message to port p of process B, and then sends a
message to process C, while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed
to send its message to C before its first message has reached port p, then it is possible for B to hear
from C before it hears from A. This apparent reversal of ordering could easily happen on the
Internet, for example, if the message from A to B traverses a satellite link, while the messages
from A to C and from C to B use ocean-floor fiber-optic cables.
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Figure 13.22 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that the
original message arrives before the receiver executes its receive operation; this need not in
general be the case.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many interme-
diate steps, particularly if traversing the Internet. It first descends through several
layers of software on the sender’s machine, then through a potentially large num-
ber of intermediate machines, and finally up through several layers of software
on the receiver’s machine. We could imagine unblocking the sender after any of
these steps, but most of the options would be indistinguishable in terms of user-
level program behavior. If we assume for the moment that a message-passingEXAMPLE 13.59

Three main options for
send semantics

system can always find buffer space to hold an outgoing message, then our three
rationales for delay suggest three principal semantic options:

No-wait send: The sender does not block for more than a small, bounded period
of time. The message-passing implementation copies the message to a safe
location and takes responsibility for its delivery.

Synchronization send: The sender waits until its message has been received.
Remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in Figure C 13.22. !
No-wait send appears in Erlang and in the Java Internet library. Synchro-

nization send appears in Occam and, by default, in Go. (If a Go channel is
declared with an explicit buffering capacity, however, no-wait send is used.)
Remote-invocation send appears in Ada and in Occam. MPI provides an
implementation-oriented hybrid of no-wait send and synchronization send: a
send operation blocks until the data in the outgoing message can safely be mod-
ified. In implementations that do their own internal buffering, this rule amounts
to no-wait send. In other implementations, it amounts to synchronization send.
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The programmer has the option, if desired, to insist on no-wait send or synchro-
nization send; performance may suffer on some systems if the request is different
from the default.

Buffering

In practice, unfortunately, no message-passing system can provide a version of
send that never waits (unless of course it simply throws some messages away). If
we imagine a thread that sits in a loop sending messages to a thread that never
receives them, we quickly see that unlimited amounts of buffer space would be
required. At some point, any implementation must be prepared to block an over-
active sender, to keep it from overwhelming the system. Such blocking is a form
of backpressure. Milder backpressure can also be applied by reducing a thread’s
scheduling priority or by increasing the (still bounded) delay before a “no-wait”
send returns.

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that theEXAMPLE 13.60

Buffering-dependent
deadlock

message-passing system is able to buffer n messages on a given communication
path. Now imagine a program in which A sends n + 1 messages to B, followed by
one message to C. C then sends one message to B, on a different communication
path. Finally, B insists on receiving the message from C before receiving the mes-
sages from A. If A blocks after message n, implementation-dependent deadlock
will result. The best that an implementation can do is to provide a sufficiently

DESIGN & IMPLEMENTATION

13.10 The semantic impact of implementation issues
The inability to buffer unlimited amounts of data and, likewise, to report er-
rors synchronously to a sender that has continued execution are only the most
recent of many examples we have seen in which pragmatic implementation is-
sues may restrict the language semantics available to the programmer. Other
examples include limitations on the length of source lines or variable names
(Section 2.1.1); limits on the memory available for data (whether global, stack,
or heap allocated) and for recursive function evaluation (Section 3.2); the lack
of ranges in case statement labels (Section 6.4.2); in reverse, downto, and
constant step sizes for for loops (Section 6.5.1); limits on set universe size
(to accommodate bit vectors—Section 8.4); limited procedure nesting (to ac-
commodate displays—Section 9.1); the pointer-only restriction on opaque ex-
ports in Modula-2 (Section 10.2.1); and the lack of nested threads or of unre-
stricted arms on a cobegin statement (to avoid the need for cactus stacks—
Section 9.5.1). Some of these limitations are reflected in the formal semantics
of the language. Others (generally those that vary most from one implementa-
tion to another) restrict the set of semantically valid programs that the system
will run correctly.
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Figure 13.23 Acknowledgment messages for error detection. In the absence of piggy-
backing, remote-invocation send (left) may require four underlying messages; synchronization
send (right) may require two.

large amount of space that realistic applications are unlikely to find the limit to
be a problem. !

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always
be permitted to proceed: we know that we shall be able to reuse the buffer space
quickly, because the thread that sent the request is already waiting for the reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or library willEXAMPLE 13.61
Acknowledgments typically employ acknowledgment messages to verify successful transmission (Fig-

ure C 13.23). If an acknowledgment is not received within a reasonable amount
of time, the implementation will typically resend. If several attempts fail to elicit
an acknowledgment, an error will be reported. !

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong, the
message is simply lost, silently. For TCP, the “solution” is to state that only “catas-
trophic” errors will cause a message to be lost, in which case the connection will
become unusable and future calls will fail immediately. An even more drastic ap-
proach was taken in the original version of MPI: certain implementation-specific
errors could be detected and handled at run time, but in general if a message
could not be delivered then the program as a whole was considered to have failed.
Newer versions of MPI provide a richer set of error-reporting facilities that can
be used, with some effort, to build fault-tolerant programs.
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Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect
of remote-invocation send, a thread can follow a no-wait send of a request with
a receive of the reply, as we saw in Example C 13.56. Similar code will allow
us to emulate remote-invocation send using synchronization send. To obtain
the effect of synchronization send, a thread can follow a no-wait send with a
receive of a high-level acknowledgment, which the receiver will send immedi-
ately upon receipt of the original message. To obtain the effect of synchronization
send using remote-invocation send, a thread that receives a request can simply
reply immediately, with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing
analogue of our shared-memory bounded buffer) that replies immediately to
“senders” or “receivers” whenever possible. The space available in the buffer pro-
cess makes explicit the resource limitations that are always present below the
surface in implementations of no-wait send.

Syntax and Language Integration

In the emulation examples above, our hypothetical syntax assumed a library-
based implementation of message passing. Because send, receive, accept, and
so on are ordinary subroutines in such an implementation, they usually take a

DESIGN & IMPLEMENTATION

13.11 Emulation and efficiency
Unfortunately, user-level emulations of alternative send semantics are seldom
as efficient as optimized implementations using the underlying primitives.
Suppose for example that we wish to use remote-invocation send to emulate
synchronization send. Suppose further that our implementation of remote-
invocation send is built on top of network software that needs acknowledg-
ments to verify message delivery. After sending a reply, the server’s run-time
system will wait for an acknowledgment from the client. If a server thread can
work for an arbitrary amount of time before sending a reply, then the run-time
system will need to send separate acknowledgments for the request and the re-
ply. If a programmer uses this implementation of remote-invocation send
to emulate synchronization send, then the underlying network may end up
transmitting a total of four messages (more if there are any transmission er-
rors). By contrast, a “native” implementation of synchronization send would
require only two underlying messages. In some cases the run-time system
for remote-invocation send may be able to delay transmission of the first ac-
knowledgment long enough to “piggy-back” it on the subsequent reply if there
is one; in this case an emulation of synchronization send may transmit three
underlying messages instead of only two. We consider the efficiency of emula-
tions further in Exercise C 13.36 and Exploration C 13.52.
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fixed, static number of parameters, two of which typically specify the location
and size of the message to be sent. To send a message containing values held in
more than one program variable, the programmer may need to explicitly gather,
or marshal, those values into the fields of a record. On the receiving end, the
programmer may then need to scatter (unmarshal) the values back into program
variables. By contrast, a concurrent programming language can provide message-
passing operations whose “argument” lists can include an arbitrary number of
values to be sent. Moreover, the compiler can arrange to perform type checking
on those values, using techniques similar to those employed for subroutine link-
age across compilation units (to be described in Section 15.6.2). Finally, as we
shall see in Section C 13.5.3, an explicitly concurrent language can employ non-
procedure-call syntax, for example to couple a remote-invocation accept and
reply in such a way that the reply doesn’t have to explicitly identify the accept
to which it corresponds.

13.5.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and the
implicit receipt described in Section 13.2.3. Among the languages and systems we
have been using as examples, none provides implicit receipt, but it appears in a
variety of research languages, and in some of the RPC systems we will consider in
Section C 13.5.4).

With implicit receipt, every message that arrives at a given port (or over a given
channel) will create a new thread of control, subject to resource limitations (any
implementation will have to stall incoming requests when the number of threads
grows too large). With explicit receipt, a message will be queued until some
already-existing thread indicates a willingness to receive it. At any given point in
time there may be a potentially large number of messages waiting to be received.
Most languages and libraries with explicit receipt allow a thread to exercise some
sort of selectivity with respect to which messages it wants to consider.

In MPI, every message includes the id of the process that sent it, together with
an integer tag specified by the sender. A receive operation specifies a desired
sender id and message tag. Only matching messages will be received. In many
cases receivers specify “wild cards” for the sender id and/or message tag, allowing
any of a variety of messages to be received. Special versions of receive also
allow a process to test (without blocking) to see if a message of a particular type
is currently available (this operation is known as polling), or to “time out” and
continue if a matching message cannot be received within a specified interval of
time.

Because they are languages instead of library packages, Ada, Erlang, Go, and
Occam are able to use special, non-procedure-call syntax for selective message re-
ceipt. Moreover because messages are built into the naming and typing system,
these languages are able to receive selectively on the basis of port/channel names
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task buffer is
entry insert(d : in bdata);
entry remove(d : out bdata);

end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;
next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;

begin
loop

select
when full_slots < SIZE =>

accept insert(d : in bdata) do
buf(next_empty) := d;

end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;

or
when full_slots > 0 =>

accept remove(d : out bdata) do
d := buf(next_full);

end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;

end select;
end loop;

end buffer;

Figure 13.24 Bounded buffer in Ada, with an explicit manager task.

and parameters, rather than the more primitive notion of tags. In all four lan-
guages, the selective receive construct is a special form of guarded command, as
described in Section C 6.7.

Figure C 13.24 contains code for a bounded buffer in Ada 83. Here an activeEXAMPLE 13.62
Bounded buffer in Ada 83 “manager” thread executes a select statement inside a loop. (Recall that it is

also possible to write a bounded buffer in Ada using protected objects, without
a manager thread, as described in Section 13.4.2.) The Ada accept statement
receives the in and in out parameters (Section 9.3.1) of a remote invocation
request. At the matching end, accept returns the in out and out parameters as
a reply message. A client task would communicate with the bounded buffer using
an entry call:

-- producer: -- consumer:
buffer.insert(3); buffer.remove(x);
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The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an
available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subsequent
accept statements are considered to see if a message is available. (The guard in
front of an accept is optional; if missing it behaves as when true =>.) If both
of the guards in our example are true (the buffer is partly full) and both kinds
of messages are available, then either arm of the statement may be executed, at
the discretion of the implementation. (For a discussion of issues of fairness in the
choice among true guards, see Sidebar C 6.11.) !

Every select statement must have at least one arm beginning with acceptEXAMPLE 13.63
Timeout and distributed
termination

(and optionally when). In addition, it may have three other types of arms:

when condition => delay how long
other statements

...
or when condition => terminate
...
else ...

A delay arm may be selected if no other arm becomes selectable within how long
seconds. (Ada implementations are required to support delays as long as 1 day
or as short as 20 ms.) A terminate arm may be selected only if all potential
communication partners have already terminated or are likewise stuck in select
statements with terminate arms. Selection of the arm causes the task that was
executing the select statement to terminate. An else arm, if present, will be
selected when none of the guards are true or when no accept statement can be
executed immediately. A select statement with an else arm is not permit-
ted to have any delay arms. In practice, one would probably want to include a
terminate arm in the select statement of a manager-style bounded buffer. !

In Go, a bounded buffer is trivial: it’s just a buffered channel:EXAMPLE 13.64
Bounded buffer in Go

type bdata struct {
n int // or whatever

}
var buffer = make(chan bdata, 10) // space for ten items of type bdata
...
buffer <- bdata{3} // insert
...
my_int = (<-buffer).n // remove

To illustrate language features, we can also build a bounded buffer with an ex-
plicit thread, an array, and a pair of default (unbuffered) channels, in a manner
similar to the Ada example of Figure C 13.24, but with synchronization send in-
stead of remote invocation. Code for this alternative appears in Figure C 13.25.
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Unlike built-in buffered channels, it could easily be augmented to support func-
tionality like priority-based (as opposed to FIFO) queueing, or methods to clear
the buffer or to query the number of messages currently queued. To use the basic
insert/remove operations, we might write:

var b = make_buffer()
...
b.insert(bdata{3}) // insert
...
my_int = b.remove().n // remove

As in the Ada example, requests are processed by an active manager thread
(called a “goroutine” in Go), here started with the go command. The select
statement in Go does not support explicit guards; we have achieved a similar effect
in Figure C 13.25 by setting the ic and rc channels to nil when they should not
be selected. Because we have used synchronization send—channels insert_c
and remove_c have zero capacity—there is an asymmetry between the handling
of insert and remove requests: the former need only send the manager data;
the latter must send a channel reference and then wait for the manager to send
the data back. !

In Erlang, which uses no-wait send, one might at first expect asymmetry sim-EXAMPLE 13.65
Bounded buffer in Erlang ilar to that of Figure C 13.25: a consumer would have to receive a reply from a

bounded buffer, but a producer could simply send data. Such asymmetry would
have a hidden flaw, however: because a process does not wait after sending, the
producer could easily send more items than the buffer can hold, with the excess
being buffered in the message system. If we want the buffer to truly be bounded,
we must require the producer to wait for an acknowledgment. Code for the buffer
appears in Figure C 13.26. Because Erlang is a functional language, we use tail re-
cursion instead of iteration. Code for the producer and consumer looks like this:

-- producer: -- consumer:
Buffer ! {insert, X, self()}, Buffer ! {remove, self()},
receive ok -> [] end. receive X -> [] end.

The exclamation point (!), borrowed from CSP, is used to send a message. !
Several languages—Erlang among them—place the parameters of an incomingEXAMPLE 13.66

Peeking at messages in
Erlang

message within the scope of the guard condition, allowing a receiver to “peek
inside” a message before deciding whether to receive it. In Erlang, we can say

receive
{insert, D} when D rem 2 == 1 -> % accept only odd numbers

The ability to peek implies that the content of incoming messages must be visible
to the language run-time system. An Erlang implementation must therefore be
prepared to accept (and buffer) an arbitrary number of messages; it cannot rely
on the operating system or other underlying software to provide the buffering for
it. Moreover the fact that buffer space can never be truly unlimited means that
guards and scheduling expressions will be unable to see messages whose delivery
has been delayed by backpressure. !
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type buffer struct {
full_slots, next_full, next_empty int
buf [SIZE]bdata
insert_c chan bdata
remove_c chan chan bdata

}
func manager(b *buffer) {

var ic chan bdata = b.insert_c
var rc chan chan bdata = nil
for { // at least one of ic and rc will always be non-nil

select {
case d := <-ic: // := means "declare and initialize"

b.buf[b.next_empty] = d
b.next_empty = (b.next_empty + 1) % SIZE
b.full_slots++
rc = b.remove_c // there is definitely data to remove
if b.full_slots == SIZE { ic = nil }

case c := <-rc:
c <- b.buf[b.next_full]
b.next_full = (b.next_full + 1) % SIZE
b.full_slots--
ic = b.insert_c // there is definitely space to fill
if b.full_slots == 0 { rc = nil }

}
}

}
func make_buffer() (b *buffer) { // return value has name 'b'

b = new(buffer)
b.full_slots = 0
b.next_full = 0
b.next_empty = 0
b.insert_c = make(chan bdata)
b.remove_c = make(chan chan bdata)
go manager(b) // create active manager thread
return

}
func (b *buffer) insert(e bdata) {

b.insert_c <- e // send data to manager
}
func (b *buffer) remove() bdata {

var c = make(chan bdata)
b.remove_c <- c // send temporary channel to manager
return <-c // receive and return response

}

Figure 13.25 Bounded buffer with an explicit manager thread in Go. The insert and remove
functions serve as methods of buffer b. Note that in the absence of additional functionality (not
shown), this code would better be replaced by trivial use of a buffered channel with capacity
SIZE. Also, if using this version, we would probably want a way to terminate the manager
thread when the buffer is no longer needed.
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buffer(Max, Free, Q) ->
receive

{insert, D, Client} when Free > 0 ->
Client ! ok, % send ack
buffer(Max, Free-1, queue:in(D, Q)); % enqueue

{remove, Client} when Free < Max ->
{{value, D}, NewQ} = queue:out(Q), % dequeue
Client ! D, % send element
buffer(Max, Free+1, NewQ)

end.

Figure 13.26 Bounded buffer in Erlang. Variables (names that can be instantiated with a value)
begin with a capital letter ; constants begin with a lower-case letter. Queue operations (in, out)
are provided by the standard Erlang library. Typing is dynamic. The send operator (!) is as in
CSP and Occam. Each clause of the receive ends with a tail recursive call.

13.5.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages, and is also supported on many
systems by augmenting a sequential language with a stub compiler. The stub com-
piler is independent of the language’s regular compiler. It accepts as input a for-
mal description of the subroutines that are to be called remotely. The description
is roughly equivalent to the subroutine headers and declarations of the types of
all parameters. Based on this input the stub compiler generates source code for
client and server stubs. A client stub for a given subroutine marshals request pa-
rameters and an indication of the desired operation into a message buffer, sends
the message to the server, waits for a reply message, and unmarshals that message
into result parameters. A server stub takes a message buffer as parameter, unmar-
shals request parameters, calls the appropriate local subroutine, marshals return
parameters into a reply message, and sends that message back to the appropri-
ate client. Invocation of a client stub is relatively straightforward. Invocation of
server stubs is discussed under “Implementation” below.

Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice:
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Parameter modes: It is difficult to implement call-by-reference parameters across
a network, since actual parameters will not be in the address space of the called
routine. (Access to global variables is similarly difficult.)

Performance: There is no escaping the fact that remote procedures may take a
long time to return. In the face of network delays, one cannot use them casu-
ally.

Failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

We can use value/result parameters in place of reference parameters so long as
program correctness does not rely on the aliasing created by reference parame-
ters. As noted in Section 9.3.1, Ada declares that a program is erroneous if it can
tell the difference between pass-by-reference and pass-by-value/result implemen-
tations of in out parameters. If absolutely necessary, reference parameters and
global variables can be implemented with message-passing thunks in a manner
reminiscent of call-by-name parameters (Section C 9.3.2), but only at very high
cost. As noted in Section 7.4, a few languages and systems perform deep copies of
linked data structures passed to remote routines.

Performance differences between local and remote calls can be hidden only by
artificially slowing down the local case. Such an option is clearly unacceptable.

DESIGN & IMPLEMENTATION

13.12 Parameters to remote procedures
Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
nodes of a cluster, however, the compiler will generally pass the same argument
to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [BHJL07], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call:
they are packaged with the request message, sent to the remote site (where
they can be accessed locally), and returned to the caller in the reply. Emerald
calls this call by move. In Hermes [SBG+91] and Rust, parameter passing is de-
structive: arguments become uninitialized from the caller’s point of view, and
can therefore migrate to a remote callee without danger of inducing remote
references.
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Exactly-once failure semantics can be provided by aborting the caller in the
event of failure or, in highly reliable systems, by delaying the caller until the oper-
ating system or language run-time system is able to rebuild the failed computation
using information previously dumped to disk. (Failure recovery techniques are
beyond the scope of this text.) An attractive alternative is to accept “at-most-
once” semantics with notification of failure. The implementation retransmits
requests for remote invocations as necessary in an attempt to recover from lost
messages. It guarantees that retransmissions will never cause an invocation to
happen more than once, but it admits that in the presence of communication
failures the invocation may not happen at all. If the programming language pro-
vides exceptions then the implementation can use them to make communication
failures look like any other kind of run-time error.

Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code produced
by an RPC stub compiler (or the run-time system of an RPC-based language)
must bridge this explicit-to-implicit gap. The typical implementation resembles
the thread-based event handling of Section 9.6.2. We describe it here in terms of
stub compilers; in a concurrent language with implicit receipt the regular com-
piler does essentially the same work.

Figure C 13.27 illustrates the layers of a typical RPC system. Code above theEXAMPLE 13.67
An RPC server system upper horizontal line is written by the application programmer. Code in the mid-

dle is a combination of library routines and code produced by the RPC stub com-
piler. To initialize the RPC system, the application makes a pair of calls into the
run-time system. The first provides the system with pointers to the stub routines
produced by the stub compiler; the second starts a message dispatcher. What hap-
pens after this second call depends on whether the server is concurrent and, if so,
whether its threads are implemented on top of one OS process or several.

In the simplest case—a single-threaded server on a single OS process—the dis-
patcher runs a loop that calls into the kernel to receive a message. When a message
arrives, the dispatcher calls the appropriate RPC stub, which unmarshals request
parameters and calls the appropriate application-level procedure. When that pro-
cedure returns, the stub marshals return parameters into a reply message, calls
into the kernel to send the message back to the caller, and then returns to the
dispatcher. !

This simple organization works well so long as each remote request can be han-
dled quickly, without ever needing to block. If remote requests must sometimes
wait for user-level synchronization, then the server’s process must manage a ready
list of threads, as described in Section 13.2.4, but with the dispatcher integrated
into the usual thread scheduler. When the current thread blocks (in application
code), the scheduler/dispatcher will grab a new thread from the ready list. If the
ready list is empty, the scheduler/dispatcher will call into the kernel to receive a
message, fork a new user-level thread to handle it, and then continue to execute
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Remote procedures

Stubs
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3

8

6

Application
program

Library/run-
time system

OS kernel

...

...

main:
 install stubs
 start dispatcher

dispatcher
 loop
  OS_receive( )

  call appropriate stub
OS_send(reply)

Figure 13.27 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the thread from the main program (in which case the call to start
the dispatcher never returns), or it may create a pool of threads that handle incoming requests.

runnable threads until the list is empty again (each thread will terminate when it
finishes handling its request).

In a multithreaded server, the call to start the dispatcher will generally ask the
kernel to fork a “pool” of threads to service remote requests. Each of these threads
will then perform the operations described in the previous paragraphs. In a lan-
guage or library with a one–one correspondence between user threads and kernel
threads, each will repeatedly receive a message from the kernel, call the appropri-
ate stub, and loop back for another request. With a more general thread package,
each kernel thread will run threads from the application’s ready list until the list
is empty, at which point it (the kernel thread) will call into the kernel for another
message. So long as the number of runnable user threads is greater than or equal
to the number of kernel threads, no new messages will be received. When the
number of runnable user threads drops below the number of kernel threads, the
extra kernel threads will call into the kernel, where they will block until requests
arrive.

3CHECK YOUR UNDERSTANDING

50. Describe three ways in which processes or threads commonly name their
communication partners.

51. What is a datagram?
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52. Why, in general, might a send operation need to block?

53. What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

54. What are gather and scatter operations in a message-passing program? What
are marshalling and unmarshalling?

55. Describe the tradeoffs between explicit and implicit message receipt.

56. What is a remote procedure call (RPC)? What is a stub compiler?

57. What are the obstacles to transparency in an RPC system?

58. What is a rendezvous? How does it differ from a remote procedure call?

59. Explain the purpose of a select statement in Ada or Go.

60. What semantic and pragmatic challenges are introduced by the ability to
“peek” inside messages before they are received?


