
2Programming Language Syntax

2.4 Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky lan-
guage hierarchy. At each level of the hierarchy, machines can be either determin-
istic or nondeterministic. A deterministic automaton always performs the same
operation in a given situation. A nondeterministic automaton can perform any
of a set of operations. A nondeterministic machine is said to accept a string if
there exists a choice of operation in each situation that will eventually lead to the
machine saying “yes.” As it turns out, nondeterministic and deterministic finite
automata are equally powerful: every DFA is, by definition, a degenerate NFA,
and the construction in Example 2.14 demonstrates that for any NFA we can cre-
ate a DFA that accepts the same language. The same is not true of push-down
automata: there are context-free languages that are accepted by an NPDA but not
by any DPDA. Fortunately, DPDAs suffice in practice to accept the syntax of real
programming languages. Practical scanners and parsers are always deterministic.

2.4.1 Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a fi-
nite set Q of states, (2) a finite alphabet Σ of input symbols, (3) a distinguished
initial state q1 ∈ Q, (4) a set of distinguished final states F ⊆ Q, and (5) a transi-
tion function δ : Q× Σ→ Q that chooses a new state for M based on the current
state and the current input symbol. M begins in state q1. One by one it consumes
its input symbols, using δ to move from state to state. When the final symbol
has been consumed, M is interpreted as saying “yes” if it is in a state in F; other-
wise it is interpreted as saying “no.” We can extend δ in the obvious way to take
strings, rather than symbols, as inputs, allowing us to say that M accepts string x if
δ(q1, x) ∈ F. We can then define L(M), the language accepted by M, to be the set

C 13

C 14 Chapter 2 Programming Language Syntax

. .

Start
d

d

d

dq3 q4

q1 q2

Figure 2.33 Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for “0, 1, 2, 3, 4, 5, 6, 7, 8, 9”.

{x | δ(q1, x) ∈ F}. In a nondeterministic finite automaton (NFA), the transition
function, δ, is multivalued: the automaton can move to any of a set of possible
states from a given state on a given input. In addition, it may move from one state
to another “spontaneously”; such transitions are said to take input symbol ε.

We can illustrate these definitions with an example. Consider the circles-and-EXAMPLE 2.56
Formal DFA for
d *(.d | d.) d *

arrows automaton of Figure C 2.33 (adapted from Figure 2.10 in the main text).
This is the minimal DFA accepting strings of decimal digits containing a single
decimal point. Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .} is the machine’s input alpha-
bet. Q = {q1, q2, q3, q4} is the set of states; q1 is the initial state; F = {q4} (a
singleton in this case) is the set of final states. The transition function can be rep-
resented by a set of triples δ = {(q1, 0, q2), . . . , (q1, 9, q2), (q1, ., q3), (q2, 0, q2),
. . . , (q2, 9, q2), (q2, ., q4), (q3, 0, q4), . . . , (q3, 9, q4), (q4, 0, q4), . . . , (q4, 9, q4)}. In
each triple (qi, a, qj), δ(qi, a) = qj. �

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate
that there exists a regular expression that generates the language accepted by any
given DFA. We illustrate the required construction below for our decimal strings
example (Figure C 2.33). More formal and general treatment of all the regular
language constructions can be found in standard automata theory texts [HMU07,
Sip13].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a
set of simple regular expressions that describe the transition function, δ. For all
states i, we define

r0
ii = a

1
| a

2
| . . . | a

m
| ε

2.4.1 Finite Automata C 15

where {a
1
| a

2
| . . . | a

m
} = {a | δ(qi, a) = qi} is the set of characters labeling

the “self-loop” from state qi back to itself. If there is no such self-loop, r0
ij = ε.

Similarly, for i 	= j, we define

r0
ij = a

1
| a

2
| . . . | a

m

where {a
1
| a

2
| . . . | a

m
} = {a | δ(qi, a) = qj} is the set of characters labeling

the arc from qi to qj. If there is no such arc, r0
ij is the empty regular expression.

(Note the difference here: we can stay in state qi by not accepting any input, so ε
is always one of the alternatives in r0

ii, but not in r0
ij when i 	= j.)

Given these r0 expressions, the dynamic programming algorithm inductively
calculates expressions rk

ij with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from qi to qj. We
assume that states are numbered starting with q1, so when k = 0 we must transi-
tion directly from qi to qj, with no intervening states.

In our small example DFA, r0
11 = r0

33 = ε, and r0
22 = r0

44 = 0 | 1 | 2 | 3 | 4EXAMPLE 2.57
Reconstructing a regular
expression for the decimal
string DFA

| 5 | 6 | 7 | 8 | 9 | ε, which we will abbreviate d | ε. Similarly, r0
13 = r0

24 = .,
and r0

12 = r0
34 = d. Expressions r0

14, r0
21, r0

23, r0
31, r0

32, r0
41, r0

42, and r0
43 are all empty.

For k > 0, the rk
ij expressions will generally generate multicharacter strings. At

each step of the dynamic programming algorithm, we let

rk
ij = rk−1

ij | rk−1
ik rk−1

kk *rk−1
kj

That is, to get from qi to qj without going through any states numbered higher
than k, we can either go from qi to qj without going through any state numbered
higher than k−1 (which we already know how to do), or else we can go from qi to
qk (without going through any state numbered higher than k−1), travel out from
qk and back again an arbitrary number of times (never visiting a state numbered
higher than k− 1 in between), and finally go from qk to qj (again without visiting
a state numbered higher than k− 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is rn

1f1
| rn

1f2
| . . . | rn

1ft
, where n = |Q| is the total number of states and

F = {qf1 , qf2 , . . . , qft} is the set of final states.
Because r0

11 = ε and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; that is, ∀i [r1

ii = r0
ii].

The second step is a bit more interesting. Since we are now allowed to go through
State 2, we have r2

22 = r2
22 r2

22 * r2
22 = (d | ε) | (d | ε) (d | ε) * (d | ε) = d * .

Because r1
21, r1

23, r1
32, and r1

42 are empty, however, r2
11, r2

33, and r2
44 remain the same

as r1
11, r1

33, and r1
44. In a similar vein, we have

r2
12 = d | d (d | ε)*(d | ε) = d+

r2
14 = d (d | ε)* . = d+ .

r2
24 = . | (d | ε) (d | ε)* . = d * .

C 16 Chapter 2 Programming Language Syntax

Missing transitions and empty expressions from the previous step leave r2
13 = r1

13
= . and r2

34 = r1
34 = d. Expressions r2

21, r2
23, r2

31, r2
32, r2

41, r2
42, and r2

43 remain empty.
In the third inductive step, we have

r3
13 = . | . ε*ε = .

r3
14 = d+ . | . ε* d = d+ . | . d

r3
34 = d | εε* d = d

All other expressions remain unchanged from the previous step.
Finally, we have

r4
14 = (d+ . | . d) | (d+ . | . d) (d | ε)*(d | ε)

= (d+ . | . d) | (d+ . | . d) d *

= (d+ . | . d) d *

= d+ . d * | . d+

Since F has a single member (q4), this expression is our final answer. �

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a
DFA may lead to exponential blow-up in the number of states. Certainly this
did not happen in our decimal string example: the NFA of Figure 2.8 has 14
states, while the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of
Figures 2.10 and C 2.33 has only 4.

Consider, however, the subset of (a | b | c) * in which some letter appears atEXAMPLE 2.58
A regular language with a
large minimal DFA

least three times. The minimal DFA for this language has 28 states. As shown in
Figure C 2.34, 27 of these are states in which we have seen i, j, and k as, bs, and
cs, respectively. The 28th (and only final) state is reached once we have seen at
least three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as
shown in Figure C 2.35. It requires that we “guess,” at the outset, whether we will
see three as, three bs, or three cs. It mirrors the structure of the natural regu-
lar expression (a | b | c) * a (a | b | c) * a (a | b | c) * a (a | b | c) * |
(a | b | c) * b (a | b | c) * b (a | b | c) * b (a | b | c) * | (a | b | c) *
c (a | b | c) * c (a | b | c) * c (a | b | c) * . �

Of course, the eight-state NFA does not emerge directly from the construc-
tion of Figure 2.7; that construction produces a 52-state machine with a certain
amount of redundancy, and with many extraneous states and epsilon produc-
tions. But consider the similar subset of (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) *EXAMPLE 2.59

Exponential DFA blow-up in which some digit appears at least ten times. The minimal DFA for this language
has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is

2.4.1 Finite Automata C 17

a,b,c

a,b,c

a,c

b,c b,c

a,c

a,b

a,b

a

a

a

a

a

c

c

c c

c

b

b b

b b

Start

000 100 200

010 110 210

020 120 220

001 101 201

011 111 211

021 121 221

002 102 202

012 112 212

022 122 222

Figure 2.34 DFA for the language consisting of all strings in (a | b | c)* in which some letter appears at least three
times. State name ijk indicates that i as, j bs, and k cs have been seen so far. Within the cubic portion of the figure, most
edge labels are elided: a transitions move to the right, b transitions go back into the page, and c transitions move down.

((0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)*)

| ((0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)*)

| . . .
| ((0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9

(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9
(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)*)

C 18 Chapter 2 Programming Language Syntax

Start

a

bb b

a

a,b,c a,b,c

b,c b,c

a,c a,c

a,b a,b

c

a

c

c

Figure 2.35 NFA corresponding to the DFA of Figure C 2.34.

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states! �

2.4.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) Σ, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet Γ of stack symbols, (7) a
distinguished initial stack symbol Z1 ∈ Γ, and (5′) a transition function δ : Q ×
Γ×{Σ∪{ε}} → Q×Γ∗, where Γ∗ is the set of strings of zero or more symbols from
Γ. N begins in state q1, with symbol Z1 in an otherwise empty stack. It repeatedly
examines the current state q and top-of-stack symbol Z. If δ(q,ε,Z) is defined,
N moves to state r and replaces Z with α in the stack, where (r, α) = δ(q,ε,Z).
In this case N does not consume its input symbol. If δ(q,ε,Z) is undefined, N
examines and consumes the current input symbol a. It then moves to state s and
replaces Z with β, where (s, β) = δ(q, a,Z). N is interpreted as accepting a string
of input symbols if and only if it consumes the symbols and ends in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of
a set of new states and stack symbol replacements when faced with a given state,
input, and top-of-stack symbol. If δ(q,ε,Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite au-
tomata. The proof is also of limited practical importance for compiler construc-
tion; we do not present it here. While it is possible to create an NPDA for any

