
Debuggers and Multi-Language Support Exercises
CS 364 — Spring 2022

1 Definitions

1. Define the following terms, and give examples where appropriate.

(a) Application Kernel:

(b) Breakpoint:

(c) Conditional Breakpoint:

(d) Debugger:

(e) Debugging Table:

(f) Marshalling:

(g) Signal:

(h) Watchpoint:

1



2 Debuggers

1. In class, we discussed the implementation of a debugger for a compiled language. How would this implementation
change for an interpreted language? Describe the steps needed to stop the program on certain lines of code, step
through expressions/statements, and access program state.

2. Write a program in C that reads numbers from the user in a loop. When the user presses ctrl-c, the program
should print out the average of those numbers and exit. Hint: You can use our approach for catching segmentation
faults (to implement breakpoints) to capture the SIGINT signal.

3. It can be nice to step backwards through code sometimes. For example, you might single-step “too far” and wish to
go back one line. Unfortunately, it is difficult to “undo” instructions because of side-effects. Using your knowledge
of debugger implementation, describe how you would implement a debugger that gives the illusion of “stepping
backwards”. (Hint: This feature is often called replay debugging.)

2



3 Multi-Language Projects

1. What are some of the reasons why a software project might contain multiple programming languages? At what
point is a multi-language project advantageous? When is a multi-language project detrimental?

2. List and describe at least three (3) uses for the JNIEnv pointer provided as the first argument to JNI C functions.

3. Compare and contrast the JNI and Python’s ctypes module. In particular, consider the examples from class and
the relative length of both C implementations. Why is the C implementation for Python so much shorter than the
implementation for Java?

4. Checksums are often used to validate data transmitted over a network. CRC32 is a common algorithm for computing
a checksum. An implementation is provided here: https://web.mit.edu/freebsd/head/sys/libkern/crc32.
c Download this file and replace line 49 (#include <sys/systm.h>) with #include <stdint.h>. Do not add
to or modify this file in any other way. Write programs in both Python and Java that call calculate crc32c (the
last function in the file). Pass in 0 as the initial CRC32 value (the first argument).

3

https://web.mit.edu/freebsd/head/sys/libkern/crc32.c
https://web.mit.edu/freebsd/head/sys/libkern/crc32.c

	Definitions
	Debuggers
	Multi-Language Projects

