Lexing, RegEx, Automata Exercises CS 364 — Spring 2022

These review exercises asks you to prepare answers to questions on regular languages and finite automata. Each of the questions has a short answer. You may discuss these exercises with other students and work on the problems together.

1 Definitions and Background

1.	Defi	ne the following terms and give examples where appropriate.
	(a)	lexeme:
	(b)	token:
	(c)	alphabet:
	(d)	language over an alphabet:
	(e)	regular language:
	(f)	maximal munch rule:
	(g)	lexical analyzer generator:
	(h)	deterministic finite automaton:
	(i)	nondeterministic finite automaton:
	(j)	finite automaton acceptance:

2.	What are the sta	ages of an interpreter?	What data type	es are passed betw	ween these stages?
3.	What differences	s are there between a c	compiler and an	interpreter?	

2

or $\mathsf{C}.$

	Regular Languages and Regular Expressions					
1.	Write a regular expression to match each of the following.					
	An RGB color: three comma-separated integers enclosed in parentheses					
	 A Java variable name: a sequence of lowercase letters, upper case letters, numbers and underscores that does not begin with a number. 					
2.	How can a character class be represented using only single match (a), empty match (ε), concatenation (AB), union (A B), and Kleene star (A*)?					
3.	Determine whether or not the following languages are regular. Explain why in one or two sentences. • L_1 is all strings over the alphabet $\{(,)\}$ where the parentheses are balanced. For example, $(()(())) \in L_1$ but $(() \notin L_1)$.					
	$ullet$ L_2 is all unique words that are printed in $ extit{Programming Language Pragmatics}$ by Michael L. Scott.					
	$ullet$ L_3 is all 10-digit numbers that are prime.					

ullet L_4 is the Reason language (as described in its reference manual). The alphabet is the set of all tokens and the language is the set of all valid Reason programs. Hint: Your answer should not be YES. can you think of two reasons why? Aside: This explains why we cannot use a lexer to parse languages like snail or Python

4. Consider the following DFA over the alphabet $\Sigma = \{a, b\}$.

Give a one-sentence description of the language recognized by the DFA. Write a regular expression for the same language.

3 Finite Automata

- 1. Consider the following languages over the alphabet $\Sigma=\{a,b\}.$
 - ullet L_1 : All strings that contain at least three a's.
 - ullet L_2 : All strings that contain at most one b.
 - ullet L_3 : All strings that contain at least three a's but at most one b.
 - L_4 : All strings that contain no b's.

Aside: This example illustrates that regular languages are closed under intersection. Note that $L_3 = L_1 \cap L_2$.

(a) For each of the languages L_1 , L_2 , L_3 and L_4 , give a regular expression.

2. Consider the following languages:

- L_1 is all strings over the alphabet $\Sigma = \{x, y\}$ where either x occurs an odd number of times or y occurs an odd number of times (or both).
- L_2 is all strings over the alphabet $\Sigma = \{x, y, z\}$ where either x occurs an odd number of times or y occurs an odd number of times or z occurs an odd number of times (or both, or all three).

Give a non-deterministic finite automaton (NFA) for the languages L_1 . Then give a separate NFA for L_2 .

Aside: Non-deterministic finite automata are no more powerful than DFAs in terms of the languages they can describe. They can be exponentially more succinct than DFAs, however.