Operational Semantics Exercises CS 364 - Spring 2022

This Review Set asks you to prepare written answers to questions on operational semantics. Each of the questions has a short answer. You may discuss this Review Set with other students and work on the problems together.

1 Definitions and Background

1. Define the following terms and give examples where appropriate.
(a) Environment:
(b) Store:
(c) Call-by-value:
(d) Call-by-reference:
2. Briefly describe the purpose of operational semantics.
3. What are the constituent parts of the context in a snail operational semantics rule? Why is each portion of the context necessary?
4. How are side-effects modeled by operational semantics?
5. How is evaluation order enforced by the snail operational semantics?

2 Operational Semantics

1. Consider these seven operational semantics rules:

$$
\begin{aligned}
& \text { (1) } \frac{\text { so, } E, S \vdash e_{1}: \operatorname{Bool}(\text { false }), E_{1}, S_{1}}{\text { so, } E, S \vdash \text { while }\left(e_{1}\right) e_{\text {body }}: \text { void, } E_{1}, S_{1}} \\
& \text { so, } E, S \vdash e_{1}: \operatorname{Bool}(t r u e), E_{1}, S_{1} \\
& \text { so, } E_{1}, S_{1} \vdash e_{\text {body }}: v, E_{2}, S_{2} \\
& \begin{array}{c}
E(i d)=l_{i d} \\
\text { (4) } \frac{S\left(l_{i d}\right)=v}{\text { so, } E, S \vdash i d: v, E, S}
\end{array} \\
& \text { so, } E, S \vdash e: v, E_{1}, S_{1} \\
& E_{1}(i d)=l_{i d} \\
& \text { (2) } \frac{\text { so, } E_{2}, S_{2} \vdash \text { while }\left(e_{1}\right) e_{\text {body }} \text { pool }: \text { void, } E_{3}, S_{3}}{\text { so, } E, S \vdash \text { while }\left(e_{1}\right) e_{\text {body }} \text { pool }: \text { void, } E_{3}, S_{3}} \\
& \text { so, } E, S \vdash e_{1}: v_{1} ; E_{1}, S_{1} \\
& l_{I d}=\operatorname{newloc}\left(S_{1}\right) \\
& S_{2}=S_{1}\left[v_{1} / l_{I d}\right] \\
& \text { (3) } \frac{E_{2}=E_{1}\left[l_{I d} / I d\right]}{\text { so, E, S } \vdash \text { let } I d=e_{1}: v_{1}, E_{2}, S_{2}} \\
& \text { (5) } \frac{S_{2}=S_{1}\left[v / l_{i d}\right]}{s o, E, S \vdash i d=e: v, E_{1}, S_{2}} \\
& \text { so, } E, S \vdash e_{1}: v_{1}, E_{1}, S_{1} \\
& \text { so, } E_{1}, S_{1} \vdash e_{2}: v_{2}, E_{2}, S_{2} \\
& \text { so, } E, S \vdash e_{1}: \operatorname{Int}\left(n_{1}\right), E_{1}, S_{1} \\
& \text { so, } E_{2}, S_{1} \vdash e_{2}: \operatorname{Int}\left(n_{2}\right), E_{2}, S_{2} \\
& \text { (7) } \frac{v= \begin{cases}\text { Bool(true }) & \text { if } n_{1}<n_{2} \\
\text { Bool }(\text { false }) & \text { if } n_{1} \geq n_{2}\end{cases} }{\text { so, } E, S \vdash e_{1}<e_{2}: v, E_{2}, S_{2}}
\end{aligned}
$$

Use these rules to construct a derivation for the following piece of code:

```
{
    let x = 2;
    while (1 < x) {
        x = x - 1;
    };
}
```

You may assume reasonable axioms, e.g. it is always true that $s o, E, S \vdash 2-1: \operatorname{Int}(1), E, S$. Start your derivation using the let rule (6) as follows:

$$
\frac{\frac{\cdots}{\text { so, } E, S \vdash(\text { let }) x=2: \operatorname{Int}(2), E_{l e t}, S_{l e t}}(3) \quad \overline{\text { so, } E_{l e t}, S_{l e t} \vdash \text { while }(1<x)\{x=x-1 ;\}: \text { void, } E_{\text {final }}, S_{\text {final }}} \text { (2) }}{\text { so, } E, S \vdash\{\text { let } x=2 ; \text { while }(1<x)\{x=x-1 ;\} ;\}: \text { void, } E_{\text {final }}, S_{\text {final }}}(6)
$$

Note that you only need to expand hypotheses that need to be proved (i.e. those containing \vdash).
2. The operational semantics for snail's while expression show that result of evaluating such an expression is always void.

However, we could have used the following alternative semantics:

- If the loop body executes at least once, the result of the while expression is the result from the last iteration of the loop body.
- If the loop body never executes (i.e., the condition is false the first time it is evaluated), then the result of the while expression is void.
For example, consider the following expression:
while $(x<10)\{x=x+1 ;\}$
The result of this expression would be 10 if, initially, $x<10$ or void if $x \geq 10$.
Write new operational rules for the while construct that formalize these alternative semantics.

