module Bigarray: Bigarray;
Bigarrays can contain elements of the following kinds:
Bigarray.float32_elt
),Bigarray.float64_elt
),Bigarray.complex32_elt
),Bigarray.complex64_elt
),Bigarray.int8_signed_elt
or Bigarray.int8_unsigned_elt
),Bigarray.int16_signed_elt
or Bigarray.int16_unsigned_elt
),Bigarray.int_elt
),Bigarray.int32_elt
),Bigarray.int64_elt
),Bigarray.nativeint_elt
).Each element kind is represented at the type level by one of the
*_elt
types defined below (defined with a single constructor instead
of abstract types for technical injectivity reasons).
type float32_elt =
| |
Float32_elt |
type float64_elt =
| |
Float64_elt |
type int8_signed_elt =
| |
Int8_signed_elt |
type int8_unsigned_elt =
| |
Int8_unsigned_elt |
type int16_signed_elt =
| |
Int16_signed_elt |
type int16_unsigned_elt =
| |
Int16_unsigned_elt |
type int32_elt =
| |
Int32_elt |
type int64_elt =
| |
Int64_elt |
type int_elt =
| |
Int_elt |
type nativeint_elt =
| |
Nativeint_elt |
type complex32_elt =
| |
Complex32_elt |
type complex64_elt =
| |
Complex64_elt |
type ('a, 'b) kind =
| |
Float32 : (float, float32_elt) kind |
| |
Float64 : (float, float64_elt) kind |
| |
Int8_signed : (int, int8_signed_elt) kind |
| |
Int8_unsigned : (int, int8_unsigned_elt) kind |
| |
Int16_signed : (int, int16_signed_elt) kind |
| |
Int16_unsigned : (int, int16_unsigned_elt) kind |
| |
Int32 : (int32, int32_elt) kind |
| |
Int64 : (int64, int64_elt) kind |
| |
Int : (int, int_elt) kind |
| |
Nativeint : (nativeint, nativeint_elt) kind |
| |
Complex32 : (Complex.t, complex32_elt) kind |
| |
Complex64 : (Complex.t, complex64_elt) kind |
| |
Char : (char, int8_unsigned_elt) kind |
To each element kind is associated an OCaml type, which is
the type of OCaml values that can be stored in the Bigarray
or read back from it. This type is not necessarily the same
as the type of the array elements proper: for instance,
a Bigarray whose elements are of kind float32_elt
contains
32-bit single precision floats, but reading or writing one of
its elements from OCaml uses the OCaml type float
, which is
64-bit double precision floats.
The GADT type ('a, 'b) kind
captures this association
of an OCaml type 'a
for values read or written in the Bigarray,
and of an element kind 'b
which represents the actual contents
of the Bigarray. Its constructors list all possible associations
of OCaml types with element kinds, and are re-exported below for
backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function | Float32 -> 0.0 | Complex32 -> Complex.zero | Float64 -> 0.0 | Complex64 -> Complex.zero | Int8_signed -> 0 | Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L | Int -> 0 | Nativeint -> 0n | Char -> '\000'
let float32: kind(float, float32_elt);
See Bigarray.char
.
let float64: kind(float, float64_elt);
See Bigarray.char
.
let complex32: kind(Complex.t, complex32_elt);
See Bigarray.char
.
let complex64: kind(Complex.t, complex64_elt);
See Bigarray.char
.
let int8_signed: kind(int, int8_signed_elt);
See Bigarray.char
.
let int8_unsigned: kind(int, int8_unsigned_elt);
See Bigarray.char
.
let int16_signed: kind(int, int16_signed_elt);
See Bigarray.char
.
let int16_unsigned: kind(int, int16_unsigned_elt);
See Bigarray.char
.
let int: kind(int, int_elt);
See Bigarray.char
.
let int32: kind(int32, int32_elt);
See Bigarray.char
.
let int64: kind(int64, int64_elt);
See Bigarray.char
.
let nativeint: kind(nativeint, nativeint_elt);
See Bigarray.char
.
let char: kind(char, int8_unsigned_elt);
As shown by the types of the values above,
Bigarrays of kind float32_elt
and float64_elt
are
accessed using the OCaml type float
. Bigarrays of complex kinds
complex32_elt
, complex64_elt
are accessed with the OCaml type
Complex.t
. Bigarrays of
integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements:
int
for 8- and 16-bit integer Bigarrays, as well as OCaml-integer
Bigarrays; int32
for 32-bit integer Bigarrays; int64
for 64-bit integer Bigarrays; and nativeint
for
platform-native integer Bigarrays. Finally, Bigarrays of
kind int8_unsigned_elt
can also be accessed as arrays of
characters instead of arrays of small integers, by using
the kind value char
instead of int8_unsigned
.
let kind_size_in_bytes: kind('a, 'b) => int;
kind_size_in_bytes k
is the number of bytes used to store
an element of type k
.
type c_layout =
| |
C_layout_typ |
type fortran_layout =
| |
Fortran_layout_typ |
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and
multi-dimensional arrays are laid out in row-major format.
That is, for a two-dimensional array, all elements of
row 0 are contiguous in memory, followed by all elements of
row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1)
are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format.
That is, for a two-dimensional array, all elements of
column 0 are contiguous in memory, followed by all elements of
column 1, etc. In other terms, the array elements at (x,y)
and (x+1, y)
are adjacent in memory.
Each layout style is identified at the type level by the
phantom types Bigarray.c_layout
and Bigarray.fortran_layout
respectively.
The GADT type 'a layout
represents one of the two supported
memory layouts: C-style or Fortran-style. Its constructors are
re-exported as values below for backward-compatibility reasons.
type 'a layout =
| |
C_layout : c_layout layout |
| |
Fortran_layout : fortran_layout layout |
let c_layout: layout(c_layout);
let fortran_layout: layout(fortran_layout);
module Genarray: sig .. end
module Array0: sig .. end
Zero-dimensional arrays.
module Array1: sig .. end
One-dimensional arrays.
module Array2: sig .. end
Two-dimensional arrays.
module Array3: sig .. end
Three-dimensional arrays.
let genarray_of_array0: Array0.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.
let genarray_of_array1: Array1.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
Return the generic Bigarray corresponding to the given one-dimensional Bigarray.
let genarray_of_array2: Array2.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
Return the generic Bigarray corresponding to the given two-dimensional Bigarray.
let genarray_of_array3: Array3.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
Return the generic Bigarray corresponding to the given three-dimensional Bigarray.
let array0_of_genarray: Genarray.t('a, 'b, 'c) => Array0.t('a, 'b, 'c);
Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument
if the generic Bigarray
does not have exactly zero dimension.let array1_of_genarray: Genarray.t('a, 'b, 'c) => Array1.t('a, 'b, 'c);
Return the one-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument
if the generic Bigarray
does not have exactly one dimension.let array2_of_genarray: Genarray.t('a, 'b, 'c) => Array2.t('a, 'b, 'c);
Return the two-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument
if the generic Bigarray
does not have exactly two dimensions.let array3_of_genarray: Genarray.t('a, 'b, 'c) => Array3.t('a, 'b, 'c);
Return the three-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument
if the generic Bigarray
does not have exactly three dimensions.let reshape: (Genarray.t('a, 'b, 'c), array(int)) => Genarray.t('a, 'b, 'c);
reshape b [|d1;...;dN|]
converts the Bigarray b
to a
N
-dimensional array of dimensions d1
...dN
. The returned
array and the original array b
share their data
and have the same layout. For instance, assuming that b
is a one-dimensional array of dimension 12, reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3 and 4.
If b
has C layout, the element (x,y)
of b'
corresponds
to the element x * 3 + y
of b
. If b
has Fortran layout,
the element (x,y)
of b'
corresponds to the element
x + (y - 1) * 4
of b
.
The returned Bigarray must have exactly the same number of
elements as the original Bigarray b
. That is, the product
of the dimensions of b
must be equal to i1 * ... * iN
.
Otherwise, Invalid_argument
is raised.
let reshape_0: Genarray.t('a, 'b, 'c) => Array0.t('a, 'b, 'c);
Specialized version of Bigarray.reshape
for reshaping to
zero-dimensional arrays.
let reshape_1: (Genarray.t('a, 'b, 'c), int) => Array1.t('a, 'b, 'c);
Specialized version of Bigarray.reshape
for reshaping to
one-dimensional arrays.
let reshape_2: (Genarray.t('a, 'b, 'c), int, int) => Array2.t('a, 'b, 'c);
Specialized version of Bigarray.reshape
for reshaping to
two-dimensional arrays.
let reshape_3:
(Genarray.t('a, 'b, 'c), int, int, int) => Array3.t('a, 'b, 'c);
Specialized version of Bigarray.reshape
for reshaping to
three-dimensional arrays.