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Abstract: Biometric recognition is used for a variety of applications including authentication, iden-
tity proofing, and border security. One recent focus of research and development has been methods to
ensure fairness across demographic groups and metrics to evaluate fairness. However, there has been
little work in this area incorporating statistical variation. This is important because differences among
groups can be found by chance when no difference is present or may be due to an actual difference
in system performance. We extend previous work to consider when individuals are members of one
or more demographics (age, gender, race). Our methodology is meant to be more comprehendable
by a non-technical audience and uses a robust bootstrap approach for estimation of variation in false
non-match rates. After presenting our methodology, we present a simulation study and we apply our
approach to MORPH-II data.
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1 Introduction

There has been significant attention to face recognition and artificial intelligence as a whole
as it relates to equity. For example, the U.S. Federal Trade Commission released guidance
on AI fairness, highlighting that “[i]t’s essential to test your algorithm [for discrimination]
based on race, gender, or other protected classes” [Ji21]. In a review of face recognition lit-
erature, demographic factors may have a significant influence on the performance of some
biometric recognition algorithms, resulting in a lower biometric performance for demo-
graphic groups, such as females, dark-skinned, and/or youngest subjects [Dr20]. Research
has shown that results differ depending on the specific algorithms, capture conditions, use
cases, and a host of additional factors [HSV19, GZ19, Go21, We22, Yu22, CKG23] .

This paper develops statistical methods for determining if there are statistically distin-
guishable false non-match rates (FNMR’s) simultaneously across multiple demographics
each having more than one category. These methods are aimed at non-technical audience,
such as policymakers, rather than the complicated analysis of variance and p-value ap-
proaches taken for similar circumstances by [Sc10] which can be problematic [WL16].
Building upon the concept of margins of error which are widely known in the public, we
derive methods usable for each demographic group or for all demographic groups simulta-
neously. Specifically, we extend the work of [Sc22] who considered the case where all the
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demographic categories were non-overlapping. demographic groups. Here, we consider
the case where individuals are members of multiple groups or categories in several demo-
graphics and we will refer to demographics as different dimensions while categories will
be the values that each of those demographics can take. For example, our methods apply
for simultaneously comparing individuals across racial, educational, and age demograph-
ics where each individual is classified into one category within each of those groups. In
that instance for the demographic Age, an individual might be in the ‘25 to 40’ category.
Additionally, for practitioner flexibility, we present methods for both creating a single
margin of error for all demographic groups or simultaneously creating intervals for each
demographic separately. For the purposes of this paper, we think of fairness as meaning
that the FNMR’s are not statistically different across one or more demographic categories
and we are motivated by an access application.

2 Related Work

Metrics for the assessment of fairness have been proposed in the literature. [dFPM22] in-
troduce the Fairness Discrepancy Rate (FDR) which is a summary of system performance
accounting for both FNMR and FMR. Their approach uses a “relaxation constant” rather
than trying to assess the sampling variation or statistical variation between FNMR’s from
different demographic groups. Howard et al. present an evaluation of FDR noting its scal-
ing problem. To address this scaling problem, the authors propose a new fairness measure
called Gini Aggregation Rate for Biometric Equitability (GARBE) [Ho22]. NIST scien-
tists also propose the Inequality Rate (IR) metric [Gr21]. In addition, the ISO/IEC working
draft 19795-10 [IS23] proposes several metrics for demographic performance differentials,
including the error rate ratio in case of two groups, and the worst case error rate relative to
the geometric mean in case of three or more groups.

While there are several metrics of fairness, there has been little research or use of statis-
tical methods for fairness metrics. The United States National Institute for Standards and
Technology (NIST) has performed the most extensive evaluation of biometric recognition
as part of a technology evaluation [GNH19]. Results are continually updated at [NI]. Com-
mercial software biometric algorithms are submitted to NIST for testing. Evaluation is per-
formed across a variety of datasets including border, visa application, and mugshot images
and for both identification (1:N) and verification (1:1). Performance is reported in terms
of FNMR and FMR for verification and FNIR and FPIR for identification. Bootstrapping
is provided as a measure of variability and presented throughout their analysis enabling
the reader to assess differences, if any, in the context of its statistical variability. Some of
the earliest work on the impact of demographics on biometric matching performance was
done by [Gi04, Be08, Be09]. More recently, [Co19] look at the impact of demographics
on facial recognition.

Bhatt et al. [Bh23] documented and explained the causal understanding of the gender gap
problem in the popular deep learning-based facial recognition techniques. The authors
claimed the gender gap problem is caused by the imbalance of the test dataset rather than
the training set and sorting the images based on hairstyle can reduce the gender gap margin
significantly. Other research has also performed extensive evaluations of face recognition
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across demographic groups, e.g. [Zh17, Co19, Bu17, GNH19, Kr20, Gr21, Pa22, Te20,
Yu22], but have not presented statistical fairness evaluation methods as part of their work.

A definitive methodology for statistical hypothesis testing of the equality of biometric error
rates was given in [Sc10]. That approach used resampling methodology to create analysis
of variance-like tests for comparing FNMR rates across groups equivalent to a single de-
mographic here. As mentioned above, [Sc22] derived a statistical margin of error via boot-
strapping for determining which, if any, FNMR’s were different from the rest. However,
that paper did not address the practical case when testing across multiple groups simulta-
neously. In this paper, we generalize their approach to handle the more general and more
realistic case when individuals are classified into categories in one or more demographics.
One obvious application of this work is the determination of fairness or statistically equal
false non-match rates across demographic categories.

3 Methodology

The methods proposed here are motivated by an application where biometric devices are
tested across multiple demographics and where each individual is classified into categories
separately within each demographic. The aim here is to determine if any of the FNMR’s
from the categories within demographics are statistically different from the overall FNMR
assuming a fixed decision threshold for all categories. Below we will provide methods for
that determination within a single demographic or across all of the demographics. The
techniques here are useful for assessing the equity of performance across demographics.

Our flexible approach is to bootstrap individuals across groups to obtain an understanding
of the variation of the error rates in each category and use that variation to build a distri-
bution of the maximal variation for the overall error rate. For our resampling, we follow
the bootstrap methodology for FNMR of [Sc10]. Having obtained a reference distribution
of the maximal variation, we then create intervals to determine if there are groups that
are statistically different. It is important to note that this approach requires no distribu-
tional assumptions about the data. Here we present methods for both additive intervals and
multiplicative intervals.

Denote the number of demographics by D and let Gd be the number of categories within
each demographic d where d = 1, . . . ,D and k = 1, . . . ,Gd . Let π represent a population
FNMR and π̂ represent the estimated FNMR from our sample. The estimated FNMR for
category k within demographic d will be denoted by π̂dk. This is calculated by the total
number of false non-matches divided by the total number of attempts of individuals in
that category. The number of false non-matches for individual i will be denoted by yi for
i = 1,2, . . . ,n. We allow for a different number of attempts per individual which we denote
by mi for individual i. For a multiplicative interval, our equation for the weighted geometric
mean FNMR is π̇ = (∏d ∏k π̂

ndk
dk )1/(∑d ∑k ndk) where ndk is the number of individuals in

category k of demographic d.

Here we propose two types of inferential intervals: additive and multiplicative. Additive
intervals are the most commonly used in practice and involve an estimate plus or minus
some margin of error (M). Multiplicative intervals are less common but involve ratios



and an estimate multiplied and divided by a ratio of error (R). We incorporate the latter
approach since [IS23] is considering using ratios and geometric means for evaluating the
fairness of a biometric device.

Below we present four different approaches to assessing fairness: an additive approach for
comparing the FNMR’s for all categories with a single interval, an additive approach for
comparing FNMR’s with each demographic separately, a multiplicative approach for com-
paring the FNMR’s for all categories with a single interval and a multiplicative approach
for comparing FNMR’s with each demographic separately. The following are the steps for
our algorithm.

1. Calculate the error rate, π̂ and the error rate in each category k within demographic
d, π̂dk. Likewise, calculate the weighted geometric mean for the entire test, π̇ , across
the various categories k and demographics d.

2. Sample with replacement the n individuals. For the analysis below, carry along the
corresponding demographic information (to which categories they belong) and the
corresponding matching performance information (how many errors from how many
attempts) for the selected individuals.

3. Calculate the bootstrapped category error rates. Denote them as π̂b
dk for each cate-

gory k in each demographic d.

4. Next calculate and store φ = maxdk |π̂b
dk − π̂dk|, φd = maxk |π̂b

dk − π̂dk|,
ψ = maxdk

(
π̂b

dk/π̂dk, π̂dk/π̂b
dk

)
, or ψd = maxk

(
π̂b

dk/π̂dk, π̂dk/π̂b
dk

)
.

5. Repeat the previous three steps some large number of times, say B times.

6. Let M be the 1−α/2th percentile of the distribution of φ , let Md be the 1−α/2th

percentile of the distribution of φd , let R be the 1−α/2th percentile of the distribu-
tion of ψ , and let Rd be the 1−α/2th percentile of the distribution of ψd .

7. Having obtained values for M, Md , R or Rd we can create additive intervals for each
πdk using π̂ ±M and π̂d ±Md , respectively, as well as multiplicative intervals for π

and each πdk using π̇R±1 and π̇R±1
d , respectively.

From the intervals derived in the last step of the above algorithm, we can use them to
determine which, if any, groups have error rates that differ from the rest. Outstanding
category FNMR’s, π̂dk’s, will lie outside of the intervals calculated via the algorithm above.
One use for this approach is to look at the equity of FNMR’s across all of the demographics
and determining which categories have FNMR’s outside of the obtained intervals. A priori
practitioners should decide if they are interested in differences across all demographic
groups (using M or R) or in differences within each demographic group (using Md or
Rd for each d). Only one approach should be used since it is possible that there may
be differences in the outcomes between the approaches and using multiple approaches
induces issues with the familywise confidence level of the interval.
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Simulation Study Results for Margins versus Number of Categories (Gd)

(a) n=400, m=3, ρ=0.2 (b) n=400, m=5, ρ=0.2 (c) n=400, m=10, ρ=0.2

(d) n=800, m=3, ρ=0.2 (e) n=800, m=5, ρ=0.2 (f) n=800, m=10, ρ=0.2

(g) n=1200, m=3, ρ=0.2 (h) n=1200, m=5, ρ=0.2 (i) n=1200, m=10, ρ=0.2

Fig. 1: Results of a simulation study for margins of error as a function of the number of individuals
(n), number of attempts (m), the correlation between attempts (ρ), and FNMR (π). Subfigures are
organized by columns where m increases from left to right and by rows where n increases from top
to bottom. Each figure plots M versus G for fixed ρ=0.2 and with different values for π denoted by
color.

4 Simulation Study

To explicate our methodology, we present a simulation study to understand how these
performances will differ for different size demographic groups, for different overall error
rates and for sample sizes. For a combination of parameters, we generated average values
of M, Md , R, and Rd in order to understand the impact of changes to the parameters on
those quantities.

We have the following steps to our simulations having set values for the number of demo-
graphics (D), the number of categories in demographic d (Gd), the False Non-Match Rate
(π), the intra-individual correlation (ρ), the number of individuals (n), and the number of
attempts per individual (m).

1. Generate m attempts from n individuals with an FNMR of π and an intra-individual
correlation of ρ .



Simulation Study Results for log(Ratio)’s versus Number of Categories (Gd)

(a) n=400, m=3, ρ=0.2 (b) n=400, m=5, ρ=0.2 (c) n=400, m=10, ρ=0.2

(d) n=800, m=3, ρ=0.2 (e) n=800, m=5, ρ=0.2 (f) n=800, m=10, ρ=0.2

(g) n=1200, m=3, ρ=0.2 (h) n=1200, m=5, ρ=0.2 (i) n=1200, m=10, ρ=0.2

Fig. 2: Results of simulation study for Ratios as a function of number of individuals (n), number
of attempts (m), correlation between attempts (ρ), and FNMR (π). Subfigures are organized by
columns where m increases from left to right and by rows where n increases from top to bottom.
Each figure plots natural logarithm of Rd and R versus Gd for fixed ρ=0.2 and with different values
for π denoted by color.

2. For each individual i, i = 1,2, . . . ,n, and each demographic d, d = 1,2, . . . ,D, ran-
domly select a category in {1,2, . . . ,Gd} for demographic d.

3. Bootstrap individuals and their corresponding performance/matching measurements
and their demographic categories using the algorithm given in the previous section.

4. Find and store M, Md for each d, R, and Rd for each d.

5. Repeat the previous four steps some larger number of times, say Z = 1000.

6. Calculate the mean value for M, Md , R and Rd .

For our simulation study we used D= 3 demographics and G1 = 3, G2 = 4 and G3 = 6. We
ran all combinations of the following values for each of the these parameters: π = 0.01,
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Number of Total Percentiles
Categories, Gd Subjects, n 80% 90% 95% 97.5%

3 400 0.0128 0.0153 0.0177 0.0200
4 400 0.0160 0.0191 0.0221 0.0250
6 400 0.0221 0.0262 0.0303 0.0345

All 400 0.0228 0.0268 0.0309 0.0350
3 800 0.0090 0.0107 0.0123 0.0137
4 800 0.0112 0.0132 0.0151 0.0169
6 800 0.0153 0.0179 0.0204 0.0229

All 800 0.0158 0.0183 0.0207 0.0232
3 1200 0.0073 0.0087 0.0099 0.0111
4 1200 0.0091 0.0107 0.0121 0.0135
6 1200 0.0123 0.0143 0.0162 0.0180

All 1200 0.0127 0.0146 0.0164 0.0182

Tab. 1: Percentiles from the distribution of Md’s and M’s with parameters ρ=0.2, m=10 and π=0.025

Number of Total Percentiles
Categories, Gd Subjects, n 80% 90% 95% 97.5%

3 400 2.00 2.30 2.66 3.08
4 400 2.59 3.21 8.20 15.22
6 400 42.06 128.27 290.14 536.41

All 400 42.46 130.29 307.77 557.58
3 800 1.60 1.74 1.88 2.03
4 800 1.86 2.07 2.30 2.54
6 800 2.48 2.93 3.47 4.11

All 800 2.58 3.04 3.58 4.23
3 1200 1.45 1.55 1.64 1.73
4 1200 1.63 1.76 1.90 2.04
6 1200 2.02 2.26 2.52 2.80

All 1200 2.07 2.31 2.57 2.85

Tab. 2: Percentiles from the distribution of Rd’s and R’s with parameters ρ=0.2, m=10 and π=0.025

0.025, 0.05, 0.10, ρ = 0,0.05, 0.1, 0.2, n = 400, 800, 1200, and m = 1,3,5,8,10. To gener-
ate to which category of demographic d an individual belonged, we used equal probability
though the methodology could easily be extended to consider non-equal probabilities. We
generated Z = 1000 datasets for each combination of parameters to ensure that our results
were statistically robust. Note that the average number of match decisions or attempts per
category was nm/Gd and, thus, the average number of errors was nmπ/Gd . Thus, the num-
ber of observations and the number of errors per category decreased as Gd increased. In
these simulations, if the number of errors in a given category was zero, we used a small
value, ε = 1.5/ndk, the midpoint of a Rule of 30 interval [JL97], to ensure a well-defined
values for the ratio.



Tab. 3: FNMR Statistical Summaries for MORPH-II Analysis

Race Gender Age
Black White Female Male 17-30 31-45 45+

∑i mi 41964 9885 7927 43922 23837 18781 9231
ndk 10561 2599 2074 11086 6163 4657 2340
π̂dk 0.0241 0.0530 0.0566 0.0247 0.0347 0.0258 0.0242

4.1 Results for M and Md

We start by considering results for M and Md from our simulation study described above.
Figure 1 shows the 95th percentiles of the average error margin across sets of parameters.
There the x-axis of the subfigures is the number of categories, Gd , except for the last
category on the right which is labeled as ‘All.’ This category represents the values for φ

which is based upon the maximal absolute value of the differences across all categories
in all demographics. For the first the values on the x-axis in each subfigure, the quantity
plotted is Md . From each subfigure, we can see that the margin of error grows as Gd
increases. Moving down subfigure rows, i.e. as n increases we see that M and Md decrease.
Similarly, going from left to right across subfigure columns, i.e. as m increases we see
decreases in the margins of error. Within each subfigure, we can see that M becomes
smaller as π decreases. Similar results with specific values can be found in Table 1 which
give specific values for the percentiles of Md’s and M’s for value of n, when ρ = 0.2,
m = 10 and π = 0.025.

4.2 Results for R and Rd

Next, we discuss the results of our simulation study for the distributions of ratios that were
generated. Figure 2 has the 95th percentiles of the parameter combinations for Rd and R
from our simulation study. Because of the large range of values, the y-axis is on a natural
logarithmic scale. As we did above in Figure 1, Figure 2 varies n along the subfigure
columns and varies m along the subfigure rows. This highlights one of the results of our
simulation study which is the ratios generated by our simulation study were sometimes
quite large. This was particularly the case when the expected number of errors per number
of categories, nmπ/Gd , was small. As above, as either n or m increased these average ratios
generally decreased. Increases in π tended to result in decreased values for Rd and R. This
pattern, increases in π , differs from the trend for additive intervals and is likely a function
of the instability of ratios of small values of π . Table 2 presents the average percentiles for
Rd’s and R’s for three values of n, when ρ = 0.2, m = 10 and π = 0.025. Here the same
pattern of results as in Figure 2 and the impact of small errors on these ratios is clear as
Gd increases when n = 400.

5 Illustration using MORPH-II Data

In this section, we apply our methodology to data from the MORPH-II dataset. The MORPH-
II dataset is a longitudinal dataset consisting of mugshots images selected from repeat



Statistical Methods for Testing Equity of FNMRs

offenders, taken over the course of 5 years. For our analysis of the MORPH-II mugshot
dataset, we used a Resnet50 face recognition model pre-trained on the VGGFace2 dataset
from an open-source code repository [He15, Ca18]. Using this model, we extracted the
512-dimensional embeddings from each sample within the dataset. Then we performed
comparisons within each individual and computed FNMR. The comparison score was
computed using the cosine similarity between two sample embeddings. We computed ev-
ery permutation of genuine comparisons for each individual. For this analysis because of
sample size considerations, we considered (D=3) three demographics: race, gender, and
age. Race had two categories (black and white), gender had two categories (female and
male), and age had three categories (young adults [17-30], middle-aged adults [30-45],
and old-aged adults [45+]). The data analyzed for this project are from 13160 individuals
resulting 51844 intra-individual comparisons. Table 3 has the summary for all categories
across the various demographics. The total number of attempts per category, ∑i mi, is given
by the first row. The second and third rows have the number of individuals, ndk, and the
FNMR, π̂dk, for demographic d and category k, respectively.

For this application, we set the False Match Rate to 0.10 and had an overall FNMR of
π̂ = 0.0296 for all individuals and a weighted geometric mean of π̇ = 0.0285. As expected
there is variation between the categories in the FNMR’s. We applied our methods above
to determine if those differences were statistically discernible. For this bootstrap, we did
5000 replications of the data and results for 95th and 97.5th percentiles can be found in
Table 4.

If we want to have a single additive interval for all categories, we should start with the first
row, M, and an 95% confidence rate would give an range of π̂ ±M = 0.0296±0.0094 =
(0.0202, 0.0390). From this we would conclude that any category that fall outside this
interval would be statistically different from the overall FNMR. In this case, that would
mean that the FNMR’s for Whites and Females were statistically larger than the FNMR for
all groups. Likewise if we were using a multiplicative interval for all categories, we would
find the appropriate interval by taking π̇ ·R±1 = 0.0285(1.252)±1 = (0.0228, 0.0357). As
above, our conclusions would be that the FNMR’s for Whites and Females are larger than
the overall FNMR.

Tab. 4: Bootstrap Percentiles for FNMR Intervals

95th 97.5th 95th 97.5th

All M 0.0082 0.0094 R 1.221 1.252
Race M1 0.0068 0.0079 R1 1.141 1.161
Gender M2 0.0078 0.0090 R2 1.152 1.170
Age M3 0.0049 0.0055 R3 1.121 1.247

It is conceivable that the focus of an analysis will be on one specific demographic rather
than across all demographics. In that case, the appropriate tool would be the intervals based
upon the appropriate demographic. For example, if for the MORPH-II data we are solely
interested in Gender, then we would make an additive interval via π̂ ±M2. So that a 90%
interval would be 0.0296± 0.0078 = (0.0218, 0.0374) and we would conclude that Fe-
males were discernibly different from average. A similarly constructed 90% multiplicative



interval for Age, 0.0285(1.121)±1 = (0.0254, 0.0319) would find that individuals aged 17
to 30 had a detectably higher FNMR.

6 Discussion

Equity and fairness in biometrics are important issues. The declaration of differences be-
tween demographic groups is a consequential one. Such conclusions about differences
between groups need to be statistically sound and recognize the presence of sampling
variation. In this paper, we have proposed interpretable methods for the determination of
statistical differences in FNMR’s in categories across multiple demographics based upon
bootstrapping biometric match data. The first approach is an additive bootstrap-based one
that extends previous work and deals with the dependence on the FNMR when individuals
are classified in categories across multiple demographics. The second approach is similar
to the first but uses a multiplicative methodology from ratios in order to generate ranges of
values that are statistically similar. Both approaches yield intervals based on the sampling
variation in the relevant metrics and can be used for the identification of demographic cat-
egories with FNMR’s that are statistically discernible. Our resampling-based approach is
focused on creating a simple interval that can be explained to a broad audience.

For the application here and the simulation study we have described above, each individual
appeared in only one category for each demographic. However, the methodology is flexible
enough to support the case where an individual is in (or selects) multiple categories within
a demographic.

The simulation study illustrated that ratio-based confidence intervals are less stable than
additive confidence intervals when the expected number of errors is small. This instability
in the ratios is more pronounced as the overall error rate decreases.

As with any statistical intervals, the choice of 1−α , the confidence level, is important.
Here the intervals chosen are derived to define family-wise error rates and control the
effects of multiplicity. While we prefer the use of a single interval across all demograph-
ics for ease of interpretation, we have provided methods for the creation of demographic
specific intervals.

To illustrate the utility of our methodology, we have applied our approach to MORPH-II
data. In this application, we note that percentiles for M and R are larger than values for
any of the Md and Rd , respectively. This is expected since the former quantities account
for variation across all demographics, rather than across a single set of demographic cat-
egories. Additionally, we see that the variation within a demographic depends upon the
error rate within each category and upon the group with the smallest number of match
decisions. This is because biometric error rates are inherently binary. The application of
our bootstrap methodology to the MORPH-II data took less than one minute to complete
using the R programming language on a standard laptop.

The focus of this paper has been on false non-match rates since we are motivated in fairness
in access but it is possible to extend the work here to false match rates though the variance
structure of false match rates requires a more complicated bootstrap resampling structure,
see Schuckers [Sc10].
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