module Array: sig .. end
Float arrays with packed representation.
type t = floatarray;
The type of float arrays with packed representation.
let length: t => int;
Return the length (number of elements) of the given floatarray.
let get: (t, int) => float;
get a n
returns the element number n
of floatarray a
.
Invalid_argument
if n
is outside the range 0 to
(length a - 1)
.let set: (t, int, float) => unit;
set a n x
modifies floatarray a
in place, replacing element
number n
with x
.
Invalid_argument
if n
is outside the range 0 to
(length a - 1)
.let make: (int, float) => t;
make n x
returns a fresh floatarray of length n
, initialized with x
.
Invalid_argument
if n < 0
or n > Sys.max_floatarray_length
.let create: int => t;
create n
returns a fresh floatarray of length n
,
with uninitialized data.
Invalid_argument
if n < 0
or n > Sys.max_floatarray_length
.let init: (int, int => float) => t;
init n f
returns a fresh floatarray of length n
,
with element number i
initialized to the result of f i
.
In other terms, init n f
tabulates the results of f
applied to the integers 0
to n-1
.
Invalid_argument
if n < 0
or n > Sys.max_floatarray_length
.let append: (t, t) => t;
append v1 v2
returns a fresh floatarray containing the
concatenation of the floatarrays v1
and v2
.
Invalid_argument
if
length v1 + length v2 > Sys.max_floatarray_length
.let concat: list(t) => t;
Same as Float.Array.append
, but concatenates a list of floatarrays.
let sub: (t, int, int) => t;
sub a pos len
returns a fresh floatarray of length len
,
containing the elements number pos
to pos + len - 1
of floatarray a
.
Invalid_argument
if pos
and len
do not
designate a valid subarray of a
; that is, if
pos < 0
, or len < 0
, or pos + len > length a
.let copy: t => t;
copy a
returns a copy of a
, that is, a fresh floatarray
containing the same elements as a
.
let fill: (t, int, int, float) => unit;
fill a pos len x
modifies the floatarray a
in place,
storing x
in elements number pos
to pos + len - 1
.
Invalid_argument
if pos
and len
do not
designate a valid subarray of a
.let blit: (t, int, t, int, int) => unit;
blit src src_pos dst dst_pos len
copies len
elements
from floatarray src
, starting at element number src_pos
,
to floatarray dst
, starting at element number dst_pos
.
It works correctly even if
src
and dst
are the same floatarray, and the source and
destination chunks overlap.
Invalid_argument
if src_pos
and len
do not
designate a valid subarray of src
, or if dst_pos
and len
do not
designate a valid subarray of dst
.let to_list: t => list(float);
to_list a
returns the list of all the elements of a
.
let of_list: list(float) => t;
of_list l
returns a fresh floatarray containing the elements
of l
.
Invalid_argument
if the length of l
is greater than
Sys.max_floatarray_length
.let iter: (float => unit, t) => unit;
iter f a
applies function f
in turn to all
the elements of a
. It is equivalent to
f a.(0); f a.(1); ...; f a.(length a - 1); ()
.
let iteri: ((int, float) => unit, t) => unit;
Same as Float.Array.iter
, but the
function is applied with the index of the element as first argument,
and the element itself as second argument.
let map: (float => float, t) => t;
map f a
applies function f
to all the elements of a
,
and builds a floatarray with the results returned by f
.
let mapi: ((int, float) => float, t) => t;
Same as Float.Array.map
, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.
let fold_left: (('a, float) => 'a, 'a, t) => 'a;
fold_left f x init
computes
f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)
,
where n
is the length of the floatarray init
.
let fold_right: ((float, 'a) => 'a, t, 'a) => 'a;
fold_right f a init
computes
f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))
,
where n
is the length of the floatarray a
.
let iter2: ((float, float) => unit, t, t) => unit;
Array.iter2 f a b
applies function f
to all the elements of a
and b
.
Invalid_argument
if the floatarrays are not the same size.let map2: ((float, float) => float, t, t) => t;
map2 f a b
applies function f
to all the elements of a
and b
, and builds a floatarray with the results returned by f
:
[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]
.
Invalid_argument
if the floatarrays are not the same size.let for_all: (float => bool, t) => bool;
for_all f [|a1; ...; an|]
checks if all elements of the floatarray
satisfy the predicate f
. That is, it returns
(f a1) && (f a2) && ... && (f an)
.
let exists: (float => bool, t) => bool;
exists f [|a1; ...; an|]
checks if at least one element of
the floatarray satisfies the predicate f
. That is, it returns
(f a1) || (f a2) || ... || (f an)
.
let mem: (float, t) => bool;
mem a set
is true if and only if there is an element of set
that is
structurally equal to a
, i.e. there is an x
in set
such
that compare a x = 0
.
let mem_ieee: (float, t) => bool;
Same as Float.Array.mem
, but uses IEEE equality instead of structural equality.
let sort: ((float, float) => int, t) => unit;
Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, compare
is
a suitable comparison function. After calling sort
, the
array is sorted in place in increasing order.
sort
is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
Specification of the comparison function:
Let a
be the floatarray and cmp
the comparison function. The following
must be true for all x
, y
, z
in a
:
cmp x y
> 0 if and only if cmp y x
< 0cmp x y
>= 0 and cmp y z
>= 0 then cmp x z
>= 0When sort
returns, a
contains the same elements as before,
reordered in such a way that for all i and j valid indices of a
:
cmp a.(i) a.(j)
>= 0 if and only if i >= jlet stable_sort: ((float, float) => int, t) => unit;
Same as Float.Array.sort
, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length n/2
, where n
is the length of the floatarray.
It is usually faster than the current implementation of Float.Array.sort
.
let fast_sort: ((float, float) => int, t) => unit;
Same as Float.Array.sort
or Float.Array.stable_sort
, whichever is faster
on typical input.
let to_seq: t => Seq.t(float);
Iterate on the floatarray, in increasing order. Modifications of the floatarray during iteration will be reflected in the iterator.
let to_seqi: t => Seq.t((int, float));
Iterate on the floatarray, in increasing order, yielding indices along elements. Modifications of the floatarray during iteration will be reflected in the iterator.
let of_seq: Seq.t(float) => t;
Create an array from the generator.
let map_to_array: (float => 'a, t) => array('a);
map_to_array f a
applies function f
to all the elements of a
,
and builds an array with the results returned by f
:
[| f a.(0); f a.(1); ...; f a.(length a - 1) |]
.
let map_from_array: ('a => float, array('a)) => t;
map_from_array f a
applies function f
to all the elements of a
,
and builds a floatarray with the results returned by f
.