module ArrayLabels: sig .. end
Array operations.
The labeled version of this module can be used as described in the
StdLabels
module.
type t('a) = array('a);
An alias for the type of arrays.
let length: array('a) => int;
Return the length (number of elements) of the given array.
let get: (array('a), int) => 'a;
get a n
returns the element number n
of array a
.
The first element has number 0.
The last element has number length a - 1
.
You can also write a.(n)
instead of get a n
.
Invalid_argument
if n
is outside the range 0 to (length a - 1)
.let set: (array('a), int, 'a) => unit;
set a n x
modifies array a
in place, replacing
element number n
with x
.
You can also write a.(n) <- x
instead of set a n x
.
Invalid_argument
if n
is outside the range 0 to length a - 1
.let make: (int, 'a) => array('a);
make n x
returns a fresh array of length n
,
initialized with x
.
All the elements of this new array are initially
physically equal to x
(in the sense of the ==
predicate).
Consequently, if x
is mutable, it is shared among all elements
of the array, and modifying x
through one of the array entries
will modify all other entries at the same time.
Invalid_argument
if n < 0
or n > Sys.max_array_length
.
If the value of x
is a floating-point number, then the maximum
size is only Sys.max_array_length / 2
.let create: (int, 'a) => array('a);
let create_float: int => array(float);
create_float n
returns a fresh float array of length n
,
with uninitialized data.
let make_float: int => array(float);
let init: (int, ~f: int => 'a) => array('a);
init n ~f
returns a fresh array of length n
,
with element number i
initialized to the result of f i
.
In other terms, init n ~f
tabulates the results of f
applied to the integers 0
to n-1
.
Invalid_argument
if n < 0
or n > Sys.max_array_length
.
If the return type of f
is float
, then the maximum
size is only Sys.max_array_length / 2
.let make_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
make_matrix ~dimx ~dimy e
returns a two-dimensional array
(an array of arrays) with first dimension dimx
and
second dimension dimy
. All the elements of this new matrix
are initially physically equal to e
.
The element (x,y
) of a matrix m
is accessed
with the notation m.(x).(y)
.
Invalid_argument
if dimx
or dimy
is negative or
greater than Sys.max_array_length
.
If the value of e
is a floating-point number, then the maximum
size is only Sys.max_array_length / 2
.let create_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
let append: (array('a), array('a)) => array('a);
append v1 v2
returns a fresh array containing the
concatenation of the arrays v1
and v2
.
Invalid_argument
if
length v1 + length v2 > Sys.max_array_length
.let concat: list(array('a)) => array('a);
Same as ArrayLabels.append
, but concatenates a list of arrays.
let sub: (array('a), ~pos: int, ~len: int) => array('a);
sub a ~pos ~len
returns a fresh array of length len
,
containing the elements number pos
to pos + len - 1
of array a
.
Invalid_argument
if pos
and len
do not
designate a valid subarray of a
; that is, if
pos < 0
, or len < 0
, or pos + len > length a
.let copy: array('a) => array('a);
copy a
returns a copy of a
, that is, a fresh array
containing the same elements as a
.
let fill: (array('a), ~pos: int, ~len: int, 'a) => unit;
fill a ~pos ~len x
modifies the array a
in place,
storing x
in elements number pos
to pos + len - 1
.
Invalid_argument
if pos
and len
do not
designate a valid subarray of a
.let blit:
(
~src: array('a),
~src_pos: int,
~dst: array('a),
~dst_pos: int,
~len: int
) =>
unit;
blit ~src ~src_pos ~dst ~dst_pos ~len
copies len
elements
from array src
, starting at element number src_pos
, to array dst
,
starting at element number dst_pos
. It works correctly even if
src
and dst
are the same array, and the source and
destination chunks overlap.
Invalid_argument
if src_pos
and len
do not
designate a valid subarray of src
, or if dst_pos
and len
do not
designate a valid subarray of dst
.let to_list: array('a) => list('a);
to_list a
returns the list of all the elements of a
.
let of_list: list('a) => array('a);
of_list l
returns a fresh array containing the elements
of l
.
Invalid_argument
if the length of l
is greater than
Sys.max_array_length
.let iter: (~f: 'a => unit, array('a)) => unit;
iter ~f a
applies function f
in turn to all
the elements of a
. It is equivalent to
f a.(0); f a.(1); ...; f a.(length a - 1); ()
.
let iteri: (~f: (int, 'a) => unit, array('a)) => unit;
Same as ArrayLabels.iter
, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.
let map: (~f: 'a => 'b, array('a)) => array('b);
map ~f a
applies function f
to all the elements of a
,
and builds an array with the results returned by f
:
[| f a.(0); f a.(1); ...; f a.(length a - 1) |]
.
let mapi: (~f: (int, 'a) => 'b, array('a)) => array('b);
Same as ArrayLabels.map
, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.
let fold_left: (~f: ('a, 'b) => 'a, ~init: 'a, array('b)) => 'a;
fold_left ~f ~init a
computes
f (... (f (f init a.(0)) a.(1)) ...) a.(n-1)
,
where n
is the length of the array a
.
let fold_right: (~f: ('b, 'a) => 'a, array('b), ~init: 'a) => 'a;
fold_right ~f a ~init
computes
f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))
,
where n
is the length of the array a
.
let iter2: (~f: ('a, 'b) => unit, array('a), array('b)) => unit;
iter2 ~f a b
applies function f
to all the elements of a
and b
.
Invalid_argument
if the arrays are not the same size.let map2: (~f: ('a, 'b) => 'c, array('a), array('b)) => array('c);
map2 ~f a b
applies function f
to all the elements of a
and b
, and builds an array with the results returned by f
:
[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]
.
Invalid_argument
if the arrays are not the same size.let for_all: (~f: 'a => bool, array('a)) => bool;
for_all ~f [|a1; ...; an|]
checks if all elements
of the array satisfy the predicate f
. That is, it returns
(f a1) && (f a2) && ... && (f an)
.
let exists: (~f: 'a => bool, array('a)) => bool;
exists ~f [|a1; ...; an|]
checks if at least one element of
the array satisfies the predicate f
. That is, it returns
(f a1) || (f a2) || ... || (f an)
.
let for_all2: (~f: ('a, 'b) => bool, array('a), array('b)) => bool;
Same as ArrayLabels.for_all
, but for a two-argument predicate.
Invalid_argument
if the two arrays have different lengths.let exists2: (~f: ('a, 'b) => bool, array('a), array('b)) => bool;
Same as ArrayLabels.exists
, but for a two-argument predicate.
Invalid_argument
if the two arrays have different lengths.let mem: ('a, ~set: array('a)) => bool;
mem a ~set
is true if and only if a
is structurally equal
to an element of l
(i.e. there is an x
in l
such that
compare a x = 0
).
let memq: ('a, ~set: array('a)) => bool;
Same as ArrayLabels.mem
, but uses physical equality
instead of structural equality to compare list elements.
let sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Sort an array in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, compare
is
a suitable comparison function. After calling sort
, the
array is sorted in place in increasing order.
sort
is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
Specification of the comparison function:
Let a
be the array and cmp
the comparison function. The following
must be true for all x
, y
, z
in a
:
cmp x y
> 0 if and only if cmp y x
< 0cmp x y
>= 0 and cmp y z
>= 0 then cmp x z
>= 0When sort
returns, a
contains the same elements as before,
reordered in such a way that for all i and j valid indices of a
:
cmp a.(i) a.(j)
>= 0 if and only if i >= jlet stable_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Same as ArrayLabels.sort
, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary array of
length n/2
, where n
is the length of the array. It is usually faster
than the current implementation of ArrayLabels.sort
.
let fast_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Same as ArrayLabels.sort
or ArrayLabels.stable_sort
, whichever is
faster on typical input.
let to_seq: array('a) => Seq.t('a);
Iterate on the array, in increasing order. Modifications of the array during iteration will be reflected in the iterator.
let to_seqi: array('a) => Seq.t((int, 'a));
Iterate on the array, in increasing order, yielding indices along elements. Modifications of the array during iteration will be reflected in the iterator.
let of_seq: Seq.t('a) => array('a);
Create an array from the generator